Reinforcement Learning

A gentle introduction

Đorđe BožićPhD Student
University of Bath

✓ djordjebbozic@gmail.com

Who am I?

- PhD student at Bath Reinforcement Learning Laboratory under professor Özgür Şimşek
- Research interests: transfer learning in reinforcement learning, continual learning, hierarchical reinforcement learning, intrinsically motivation

Đorđe BožićPhD Student University of Bath

djordjebbozic@gmail.com

Resources

- [Sutton & Barto 2018]: Sutton, Richard S. and Barto, Andrew G. Reinforcement Learning: An Introduction. Second: The MIT Press, 2018.
- [Russel & Norvig 2010]: Russell, S. & Norvig, P. (2010), Artificial Intelligence: A Modern Approach, Prentice Hall.

Introduction

Tunnelling strategy discovered by DQN on Breakout Atari environment

Taxonomy of contemporary ML [Yan et al. 2019]

Introduction

14:32
Calleyst LE

| 177 | 1200 | 945 + 2011 | 758 + 973 | 64 | 113 | 940 | 94

Stratospheric Balloon Navigation, Bellemare et

al, 2020

Alpha Go, Silver et al. 2016

Alpha Star, Vinyals et al. 2019

OPENAI FIVE

Denais (Bit)

Den

TCV#70915

I_p (kA) -100 -150 0.25

Axis z (m) 0

X-point z (m) -0.5 - -0.8

Shape RMSE (cm) 200 -

Alpha Zero, Silver et al. 2017

OpenAl Five, Barner et al. 2019

Magnetic Control of Tokamak Plasmas, Degrave et al, 2022

Time since breakdown (s)

Outline

- Introduction
- Reinforcement Learning Formalisation
- Model-Free Reinforcement Learning
- Policy Gradient Methods

Outline

- Introduction
- Reinforcement Learning Formalisation
 - Agents and Environments
 - Markov Decision Process
 - Reward and Return
 - Policy
 - State-Value Function
 - Action-Value Function
 - Optimal Policy
 - Optimal Value Functions
 - Bellman Equations and Planning
 - Generalised Policy Iteration (GPI)
 - Exploration-Exploitation Trade-Off

Agents and Environments

- Agent interacts with the environment
- Rewards given as feedback
- Different kind of supervision:
 - Samples not I.I.D
 - Learning signal may be delayed

Lunar Lander, Breakout, MuJoCo Humanoid, Hand [Open Al Gym Environment suite]

Agents and Environments

- Environment characteristics?
 - Episodic (finite-horizon) vs. Continuing (indefinite-horizon)
 - Deterministic vs. Stochastic
 - Fully vs. Partially observable
 - Discrete vs. Continuous

Agents and Environments

- Environment characteristics?
 - Episodic (finite-horizon) vs. Continuing (indefinite-horizon)
 - Deterministic vs. Stochastic
 - Fully vs. Partially observable
 - Discrete vs. Continuous

Agents and Environments

- Environment characteristics?
 - Episodic (finite-horizon) vs. Continuing (indefinite-horizon)
 - Deterministic vs. Stochastic
 - Fully vs. Partially observable
 - Discrete vs. Continuous

Agents and Environments

- Environment characteristics?
 - Stochastic, multiple terminal states
- How to find the optimal strategy?
 - Search algorithms (depth-first, A*, ...) not applicable

Markov Decision Process

- Markov Decision Process (MDP) is a tuple (S, A, R):
 - S finite set of states
 - A set of actions
 - R set of rewards
- p(s'|s,a) MDP transition model
- $r_s^a \doteq \mathbb{E}\left[R_{t+1} \mid S_t = s, A_t = a\right]$
 - $= \sum_{s'} p(s'|s,a)r_{ss'}^a \text{ one step expected reward}$

Markov Decision Process

- Markov Decision Process (MDP) is a tuple (S, A, R):
 - S finite set of states
 - A set of actions
 - R set of rewards
- p(s'|s,a) MDP transition model
- $r_s^a \doteq \mathbb{E}\left[R_{t+1} \mid S_t = s, A_t = a\right]$
 - = $\sum_{s'} p(s'|s,a)r$ one step expected reward

$$(S_0 = (0,2), A_0 = RIGHT, R_1 = -1), (S_1 = (1,2), ...), ...$$

 $(S_0 = (0,2), A_0 = RIGHT, R_1 = -1), (S_1 = (0,1), ...), ...$
 $(S_0 = (0,2), A_0 = RIGHT, R_1 = -40),$
 $r_{(0,2)}^{RIGHT} = 0.5 \cdot (-1) + 0.25 \cdot (-1) + 0.25 \cdot (-40) = -10.75$

Agents and Environments

 Agent-environment interaction forms a trajectory:

$$\tau = (S_0, A_0, R_1), (S_1, A_1, R_2), \dots, (S_t, A_t, R_{t+1}), \dots$$

Markov Decision Process

Markov property:

$$P[S_{t+1} | S_t] = P[S_{t+1} | S_t, S_{t-1}, \dots, S_0]$$

- The future is independent of the past given the present
- The state is sufficient statistic of the future

Reward and Return

• Agent's goal is to maximise the return G:

$$G_{t} \doteq r_{t+1} + \gamma r_{t+2} + \gamma^{2} r_{t+3} + \dots$$

$$= r_{t+1} + \gamma (r_{t+2} + \gamma r_{t+3} + \dots)$$

$$= r_{t+1} + \gamma G_{t+1}$$

- $\gamma \in [0,1]$ future reward *discount factor*
 - Varying γ varies the "far-sightedness"
 - Mathematically convenient in continuing problems and cyclic Markov processes:

$$G_t = \sum_{k=0}^{\infty} \gamma^k r_{t+k+1} = \frac{r}{1-\gamma}$$

Reward and Return

- Credit assignment problem:
 - How do you distribute credit for success (or blame for failure) of a decision (action) among the many throughout the episode?

Policy

- Policy fully captures agent's reasoning process (agent = policy)
- Is the conditional probability distribution over actions $a \in A$ given states $s \in S$:
 - Deterministic policy: $a = \pi(s)$
 - e.g. greedy policy
 - Stochastic policy: $\pi(a \mid s) = P[A_t = a \mid S_t = s]$ 2
 - e.g. exploratory policy
- Learning in RL refers to learning the policy that maximises the return

State-Value Function

$$v_{\pi}(s) \doteq \mathbb{E}_{\pi}[G_t | S_t = s]$$

$$= \mathbb{E}_{\pi}[r_{t+1} + \gamma G_{t+1} | S_t = s]$$

$$= \sum_{a} \pi(a | s) \left[r_s^a + \gamma \sum_{s'} p(s' | s, a) v_{\pi}(s') \right]$$

Between MDPs and SMDPs [Sutton et al. 1999]

Backup diagram for v_{π} [Sutton & Barto 2018]

Bellman equation for state-value

Action-Value Function

• The action-value function $q_{\pi}(s, a)$ of an MDP is the expected return starting from state s by taking an action a, and then following policy π :

$$q_{\pi}(s, a) \doteq \mathbb{E}_{\pi}[G_{t} | S_{t} = s, A_{t} = a]$$

$$= \mathbb{E}_{\pi}[r_{t+1} + \gamma G_{t+1} | S_{t} = s, A_{t} = a]$$

$$= r_{s}^{a} + \gamma \sum_{s'} p(s' | s, a) v_{\pi}(s')$$

$$= r_{s}^{a} + \gamma \sum_{s'} p(s' | s, a) \sum_{a'} \pi(a' | s') q_{\pi}(s', a')$$

Between MDPs and SMDPs [Sutton et al. 1999]

Bellman equation for action-value

Backup diagram for q_{π} [Sutton & Barto 2018]

Action-Value Function

• The action-value function $q_{\pi}(s, a)$ of an MDP is the expected return starting from state s by taking an action a, and then following policy π :

$$q_{\pi}(s, a) \doteq \mathbb{E}_{\pi}[G_{t} | S_{t} = s, A_{t} = a]$$

$$= \mathbb{E}_{\pi}[r_{t+1} + \gamma G_{t+1} | S_{t} = s, A_{t} = a]$$

$$= r_{s}^{a} + \gamma \sum_{s'} p(s' | s, a) v_{\pi}(s')$$

$$= r_{s}^{a} + \gamma \sum_{s'} p(s' | s, a) \sum_{a'} \pi(a' | s') q_{\pi}(s', a')$$

Between MDPs and SMDPs [Sutton et al. 1999]

Relationship between v_{π} and q_{π}

Backup diagram for q_{π} [Sutton & Barto 2018]

Optimal Policy

- Value functions define a partial ordering over policies: $\pi' \ge \pi$ if and olnly if $v_{\pi'}(s) \ge v_{\pi}(s) \, \forall s \in S$
- A policy π' is defined to be better than or equal to a policy π if its expected return is greater than or equal to that of π for all states
- There is always at least one policy that is better than or equal to all other policies, called the *optimal policy*, and denoted π^*
- Policy Improvement Theorem: If we have two policies π and π' so that $\pi(s) = \pi'(s)$ for all $s \in S$ except some s' where $\pi'(s') = a \neq \pi(s')$ and $q_{\pi}(s,a) > v_{\pi}(s)$ then $\pi' > \pi$.

Proof: [Sutton & Barto 2018] p. 78

Optimal Value Functions

- All optimal policies share the same state-value function $v^*(s)$ and action-value function $q^*(s,a)$
- Correspond to optimal policies, and optimal policies are greedy

$$v^{*}(s) \doteq \max_{\pi} v_{\pi}(s)$$

$$= \max_{a \in A} \mathbb{E}_{\pi} \left[r_{t+1} + \gamma G_{t+1} | S_{t} = s, A_{t} = a \right]$$

$$= \max_{a \in A} \left[r_{s}^{a} + \gamma \sum_{s'} p(s'|s, a) v^{*}(s') \right]$$

$$q^{*}(s, a) \doteq \max_{\pi} q_{\pi}(s, a)$$

$$= r_{s}^{a} + \gamma \sum_{s'} p(s'|s, a) \max_{a' \in A} q^{*}(s', a')$$

Optimal value backup diagrams [Sutton & Barto 2018]

Bellman Equations and Planning

- Equations for v_{π} and q_{π} are called *Bellman equations*
 - Set of recursive equations relating states (and actions) to successor states (and actions)
 - In principle, could be solved iteratively, or with a dynamic programming methods:
 - value iteration, q-value iteration, policy iteration
- Equations for v^* and q^* are called Bellman optimality equations

Generalised Policy Iteration (GPI)

 As a direct consequence of the policy improvement theorem:

$$\pi_0 \xrightarrow{Eval} v_{\pi_0} \xrightarrow{Impr} \pi_1 \xrightarrow{Eval} v_{\pi_1} \xrightarrow{Impr} \dots \pi^* \xrightarrow{Eval} v_{\pi^*}$$

- Policy evaluation: Estimate the true v,π value $V \approx v_\pi$ iteratively
- Policy improvement: Use estimated $V \approx v_{\pi}$ to select a better policy $\pi' \geq \pi$, $\pi' = \operatorname{greedy}(V)$

GPI convergence [Sutton & Barto 2018]

Generalised Policy Iteration (GPI)

Policy Iteration (using iterative policy evaluation) for estimating $\pi \approx \pi_*$

1. Initialization

$$V(s) \in \mathbb{R}$$
 and $\pi(s) \in \mathcal{A}(s)$ arbitrarily for all $s \in \mathcal{S}$

2. Policy Evaluation

Loop:

$$\Delta \leftarrow 0$$

Loop for each $s \in S$:

$$v \leftarrow V(s)$$

$$V(s) \leftarrow \sum_{s'} p(s'|s, \pi(s)) \left[r_{ss'}^a + \gamma V(s') \right]$$

$$\Delta \leftarrow \max(\Delta, |v - V(s)|)$$

$$\Delta \leftarrow \max^s(\Delta, |v - V(s)|)$$

until $\Delta < \theta$ (a small positive number determining the accuracy of estimation)

3. Policy Improvement

$$policy$$
- $stable \leftarrow true$

For each $s \in S$:

$$old\text{-}action \leftarrow \pi(s)$$

$$\pi(s) \leftarrow \arg\max \sum_{s'} p(s'|s,a) [r_{ss'}^a + \gamma V(s')]$$

If $old\text{-}action \neq \pi(s)$, then $policy\text{-}stable \leftarrow false$

If policy-stable, then stop and return $V \approx v_*$ and $\pi \approx \pi_*$; else go to 2

Exploration-Exploitation Trade-Off

- Exploration: Find more about the environment
- Exploitation: Utilise gained knowledge to garner higher returns
- The case of the agent tasked with garnering the highest return in a continuing environment throughout its entire lifetime:
 - If it commits to early-found schema for obtaining rewards, it may not find out possibly better schemas
 - If it overly explores, its return will suffer

Outline

- Introduction
- Reinforcement Learning Formalisation
- Model-Free Reinforcement Learning
 - Motivation
 - Monte Carlo and Temporal Difference Methods
 - MC and TD: Bias vs Variance Trade-Off
 - MC and TD: Future vs Previous Data
 - MC and TD: Summary
 - On-Policy vs Off-policy Learning
 - Example 1: First-visit MC
 - Example 2: Q-Learning
 - Conclusions
 - Beyond Tabular Methods

•

Motivation

- MDP transition model p(s'|s,a) is usually unknown, or using it is impractical
- Without it equations for v_{π} , q_{π} , v^{*} , q^{*} incomputable
- Two options:
 - Learn the model p(s'|s,a), or use it to some degree if known model based RL (MBRL)
 - Estimate v_{π} , q_{π} , v^* , q^* directly without learning the model model free RL (MFRL)

Motivation

- MDP transition model p(s'|s,a) is usually unknown, or using it is impractical
- Without it equations for v_{π} , q_{π} , v^{*} , q^{*} incomputable
- Two options:
 - Learn the model p(s'|s,a), or use it to some degree if known model based RL (MBRL)
 - Estimate v_{π} , q_{π} , v^* , q^* directly without learning the model model free RL (MFRL)

Alpha Go, Silver et al. 2016

OpenAl Five, Barner et al. 2019

Motivation

- MDP transition model p(s'|s,a) is usually unknown, or using it is impractical
- Without it equations for v_{π} , q_{π} , v^* , q^* incomputable
- Two options:
 - Learn the model p(s'|s,a), or use it to some degree if known model based RL (MBRL)
 - Estimate v_{π} , q_{π} , v^* , q^* directly without learning the model model free RL (MFRL)
 - $V_t(s)$, $Q_t(s,a)$ are (imperfect) estimates to v_π , q_π at computation time step t

OpenAl Five, Barner et al. 2019

Motivation

$$v_{\pi}(s) \doteq \mathbb{E}_{\pi}[G_t | S_t = s]$$
$$= \mathbb{E}_{\pi}[r_{t+1} + \gamma G_{t+1} | S_t = s]$$

Between MDPs and SMDPs [Sutton et al. 1999]

Motivation

$$v_{\pi}(s) \doteq \mathbb{E}_{\pi}[G_{t} | S_{t} = s]$$

$$= \mathbb{E}_{\pi}[r_{t+1} + \gamma G_{t+1} | S_{t} = s]$$

$$= \sum_{a} \pi(a | s) \left[r_{s}^{a} + \gamma \sum_{s'} p(s' | s, a) v_{\pi}(s') \right]$$

Between MDPs and SMDPs [Sutton et al. 1999]

Motivation

$$v_{\pi}(s) \doteq \mathbb{E}_{\pi}[G_t | S_t = s]$$

$$= \mathbb{E}_{\pi}[r_{t+1} + \gamma G_{t+1} | S_t = s]$$

$$= \sum_{a} \pi(a | s) \left[r_s^a + \gamma \sum_{s'} p(s' | s, a) v_{\pi}(s') \right]$$

Between MDPs and SMDPs [Sutton et al. 1999]

Monte Carlo (MC) and Temporal Difference (TD)

Monte Carlo (MC) methods

- Core idea:
 - Play entire episodes using a fixed policy π and estimate state values v_π as empirical means of returns
- Can only be applied to episodic tasks

Temporal Difference (TD) methods

- Core idea:
 - Utilise the recursive nature of the Bellman equation to update state values v_{π} based on states agent transitions to
- Learn from incomplete episodes, can be applied to continuing tasks
- They bootstrap instead of measuring the true return G_t they use $V(S_t)$ as its estimate, which in turn is also an estimate of the true $v_{\pi}(S_t)$

Model free RL Monte Carlo (MC) and Temporal Difference (TD)

Criteria	Monte Carlo Methods	Temporal Difference Methods
Bias vs Variance		
Online		
Bootstrapping		because v _t is based off of v _{t+1}
Estimation		
On-Policy		
Off-Policy		
Past vs Future Future data		

Monte Carlo (MC) and Temporal Difference (TD)

$$V(s)_{n+1} = \frac{1}{n} \sum_{i=1}^{n} G_{s_i}$$

$$= \frac{1}{n} \left(G_{s_n} + \sum_{i=1}^{(n-1)} G_{s_i} \right)$$

$$= \frac{1}{n} \left(G_{s_n} + (n-1) \cdot \frac{1}{n-1} \sum_{i=1}^{(n-1)} G_{s_i} \right)$$

$$= \frac{1}{n} \left(G_{s_n} - (n-1) \cdot V(s)_n \right)$$

$$= V(s)_n + \frac{1}{n} \left(G_{s_n} - V(s)_n \right)$$

$G_t = R + \gamma G_{t+1}$ $\approx R + \gamma V_{t+1}$

Monte Carlo (MC) Update

$$V(s) \leftarrow V(s) + \frac{1}{n} \left[G_t - V(s) \right]$$

Temporal Difference (TD) Update

$$V(s) \leftarrow V(s) + \alpha \left[R + \gamma V(s') - V(s) \right]$$

Monte Carlo (MC) and Temporal Difference (TD)

$$V(s)_{n+1} = \frac{1}{n} \sum_{i=1}^{n} G_{s_i}$$

$$= \frac{1}{n} \left(G_{s_n} + \sum_{i=1}^{(n-1)} G_{s_i} \right)$$

$$= \frac{1}{n} \left(G_{s_n} + (n-1)V(s)_n \right)$$

$$= V(s)_n + \frac{1}{n} \left(G_{s_n} - V(s)_n \right)$$

$$G_t = R + \gamma G_{t+1}$$

$$\approx R + \gamma V_{t+1}$$

Monte Carlo (MC) Update

$$V(s) \leftarrow V(s) + \frac{1}{n} \left[G_t - V(s) \right]$$

step size target error

Temporal Difference (TD) Update

$$V(s) \leftarrow V(s) + \alpha \left[R + \gamma V(s') - V(s) \right]$$

Monte Carlo (MC) and Temporal Difference (TD)

Monte Carlo (MC) Update

$$V(s) \leftarrow V(s) + \frac{1}{n} \left[G_t - V(s) \right]$$

Temporal Difference (TD) Update

$$V(s) \leftarrow V(s) + \alpha \left[R + \gamma V(s') - V(s) \right]$$

Monte Carlo (MC) and Temporal Difference (TD)

Monte Carlo (MC) Update

• Is an estimate because expectation over return is not known and is estimated by sample mean

Temporal Difference (TD) Update

•Is an estimate both because the expectation is unknown, and true $v_{\pi}(S_{t+1})$ is approximated by current estimate $V(S_{t+1})$

Model free RLMonte Carlo (MC) and Temporal Difference (TD)

Comparison of RL methods [Sutton & Barto 2018]

MC and TD: Bias vs Variance Trade-Off

- MC Target [return G_t] is an *unbiased estimate* of $v_{\pi}(S_t)$
- TD Target $[R_{t+1} + \gamma V(S_{t+1})]$ is biased estimate of $v_{\pi}(S_t)$
- On the other hand, TD target has much lower variance compared to MC target:
 - Return depends on many steps during the episode, each potentially affected by the environment stochasticity
 - TD target depends only on a single step
- MC methods do not bootstrap, while TD methods bootstrap because estimating $V(S_t)$ uses another estimate $V(S_{t+1})$

MC and TD: Future vs Previous Data

Example

- A, 0, B, 0
- B, 1
- B, 0
- V(A) = ?; V(B) = ?

MC and TD: Bias vs Variance Trade-Off

Example

- A, 0, B, 0
- B, 1
- B, 0
- V(A) = ?; V(B) = ?

Solution

V(B): In 6/8 examples G_t for B was 1, in 2/8 examples it was 0. Both TD and MC would

agree
$$V(B) = \frac{3}{4}$$
.

V(A): Two lines of reasoning:

• MC: A was seen only once, and the return was 0, therefore V(A)=0 _('\mathcal{V})_/

MC and TD: Summary

- MC methods minimise the error on the training set
- TD methods try to estimate the underlying MDP and give its maximum likelihood estimate
- MC methods need to wait for episodes to finish in order to update value functions
- TD methods can update value functions at each time-step
- MC methods have low (no) bias but high variance
- TD methods have hight bias and low variance
- MC methods are estimates because the expectation $\mathbb{E}_{\pi}[G_t | S_t = s]$ is unknown
- TD methods are estimates both because the expectation $\mathbb{E}_{\pi}[R_{t+1} + G_{t+1} \mid S_t = s]$ is unknown, and because $V(S_{t+1})$ is used instead of $v_{\pi}(S_{t+1})$

On-Policy vs Off-Policy Learning

- All learning methods face a dilemma:
 - They seek to learn action values conditional on subsequent optimal behaviour
 - But they need to behave non-optimally in order to explore all actions
- On-policy learning:
 - Learn about policy π from experience sampled by π
 - π is neither fully greedy, nor fully exploratory we need to keep sufficient exploration in order to converge to good behaviour
 - Conceptually very simple
- Off-policy learning:
 - Learn about target policy π from experience sampled by behaviour policy b
 - Allows for learning from past policy experiences or people
 - Alleviates exploration-exploitation tradeoff, but is more conceptually challenging

Example 1: On-Policy MC Algorithm

	x ()	_	1	2		3	3
y	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
1	0	0	0	0				
	0	0	0	0				
2	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0
3								

```
On-policy first-visit MC control (for \varepsilon-soft policies), estimates \pi \approx \pi_*
Algorithm parameter: small \varepsilon > 0
Initialize:
    \pi \leftarrow \text{an arbitrary } \varepsilon\text{-soft policy}
    Q(s, a) \in \mathbb{R} (arbitrarily), for all s \in \mathcal{S}, a \in \mathcal{A}(s)
     Returns(s, a) \leftarrow \text{empty list, for all } s \in S, \ a \in \mathcal{A}(s)
Repeat forever (for each episode):
     Generate an episode following \pi: S_0, A_0, R_1, \ldots, S_{T-1}, A_{T-1}, R_T
     G \leftarrow 0
     Loop for each step of episode, t = T-1, T-2, \ldots, 0:
         G \leftarrow \gamma G + R_{t+1}
         Unless the pair S_t, A_t appears in S_0, A_0, S_1, A_1, \ldots, S_{t-1}, A_{t-1}:
              Append G to Returns(S_t, A_t)
              Q(S_t, A_t) \leftarrow \text{average}(Returns(S_t, A_t))
                                                                                     (with ties broken arbitrarily)
              A^* \leftarrow \operatorname{arg\,max}_a Q(S_t, a)
              For all a \in \mathcal{A}(S_t):
                       \pi(a|S_t) \leftarrow \begin{cases} 1 - \varepsilon + \varepsilon/|\mathcal{A}(S_t)| & \text{if } a = A^* \\ \varepsilon/|\mathcal{A}(S_t)| & \text{if } a \neq A^* \end{cases}
```

$$\tau_{\pi} = []$$


```
On-policy first-visit MC control (for \varepsilon-soft policies), estimates \pi \approx \pi_*
Algorithm parameter: small \varepsilon > 0
Initialize:
    \pi \leftarrow \text{an arbitrary } \varepsilon\text{-soft policy}
    Q(s, a) \in \mathbb{R} (arbitrarily), for all s \in \mathcal{S}, a \in \mathcal{A}(s)
     Returns(s, a) \leftarrow \text{empty list, for all } s \in S, \ a \in \mathcal{A}(s)
Repeat forever (for each episode):
     Generate an episode following \pi: S_0, A_0, R_1, \ldots, S_{T-1}, A_{T-1}, R_T
     G \leftarrow 0
     Loop for each step of episode, t = T-1, T-2, \ldots, 0:
         G \leftarrow \gamma G + R_{t+1}
         Unless the pair S_t, A_t appears in S_0, A_0, S_1, A_1, \ldots, S_{t-1}, A_{t-1}:
              Append G to Returns(S_t, A_t)
              Q(S_t, A_t) \leftarrow \text{average}(Returns(S_t, A_t))
                                                                                     (with ties broken arbitrarily)
              A^* \leftarrow \operatorname{arg\,max}_a Q(S_t, a)
              For all a \in \mathcal{A}(S_t):
                       \pi(a|S_t) \leftarrow \begin{cases} 1 - \varepsilon + \varepsilon/|\mathcal{A}(S_t)| & \text{if } a = A^* \\ \varepsilon/|\mathcal{A}(S_t)| & \text{if } a \neq A^* \end{cases}
```

$$\tau_{\pi} = [(0,2), \text{UP}, -1]$$


```
On-policy first-visit MC control (for \varepsilon-soft policies), estimates \pi \approx \pi_*
Algorithm parameter: small \varepsilon > 0
Initialize:
    \pi \leftarrow \text{an arbitrary } \varepsilon\text{-soft policy}
    Q(s, a) \in \mathbb{R} (arbitrarily), for all s \in \mathcal{S}, a \in \mathcal{A}(s)
     Returns(s, a) \leftarrow \text{empty list, for all } s \in S, \ a \in \mathcal{A}(s)
Repeat forever (for each episode):
     Generate an episode following \pi: S_0, A_0, R_1, \ldots, S_{T-1}, A_{T-1}, R_T
     G \leftarrow 0
     Loop for each step of episode, t = T-1, T-2, \ldots, 0:
         G \leftarrow \gamma G + R_{t+1}
         Unless the pair S_t, A_t appears in S_0, A_0, S_1, A_1, \ldots, S_{t-1}, A_{t-1}:
              Append G to Returns(S_t, A_t)
              Q(S_t, A_t) \leftarrow \text{average}(Returns(S_t, A_t))
                                                                                     (with ties broken arbitrarily)
              A^* \leftarrow \operatorname{arg\,max}_a Q(S_t, a)
              For all a \in \mathcal{A}(S_t):
                       \pi(a|S_t) \leftarrow \begin{cases} 1 - \varepsilon + \varepsilon/|\mathcal{A}(S_t)| & \text{if } a = A^* \\ \varepsilon/|\mathcal{A}(S_t)| & \text{if } a \neq A^* \end{cases}
```

$$\tau_{\pi} = [(0,2), \text{UP}, -1], [(0,1), \text{UP}, -1]$$


```
On-policy first-visit MC control (for \varepsilon-soft policies), estimates \pi \approx \pi_*
Algorithm parameter: small \varepsilon > 0
Initialize:
    \pi \leftarrow an arbitrary \varepsilon-soft policy
    Q(s,a) \in \mathbb{R} (arbitrarily), for all s \in \mathcal{S}, a \in \mathcal{A}(s)
     Returns(s, a) \leftarrow \text{empty list, for all } s \in S, \ a \in \mathcal{A}(s)
Repeat forever (for each episode):
     Generate an episode following \pi: S_0, A_0, R_1, \ldots, S_{T-1}, A_{T-1}, R_T
    G \leftarrow 0
    Loop for each step of episode, t = T-1, T-2, \ldots, 0:
         G \leftarrow \gamma G + R_{t+1}
         Unless the pair S_t, A_t appears in S_0, A_0, S_1, A_1, \ldots, S_{t-1}, A_{t-1}:
              Append G to Returns(S_t, A_t)
              Q(S_t, A_t) \leftarrow \text{average}(Returns(S_t, A_t))
                                                                                   (with ties broken arbitrarily)
              A^* \leftarrow \operatorname{arg\,max}_a Q(S_t, a)
              For all a \in \mathcal{A}(S_t):
                       \pi(a|S_t) \leftarrow \begin{cases} 1 - \varepsilon + \varepsilon/|\mathcal{A}(S_t)| & \text{if } a = A^* \\ \varepsilon/|\mathcal{A}(S_t)| & \text{if } a \neq A^* \end{cases}
```

$$\tau_{\pi} = [(0,2), \text{UP}, -1], [(0,1), \text{UP}, -1], [(0,0), \text{UP}, -1]$$

$$\tau_{\pi} = [(0,2), \text{UP}, -1], [(0,1), \text{UP}, -1], [(0,0), \text{UP}, -1], [(0,0), \text{UP}, -1]$$

Example 1: On-Policy MC Algorithm

 $\tau_{\pi} = [(0,2), \text{UP}, -1], [(0,1), \text{UP}, -1], [(0,0), \text{UP}, -1], [(0,0), \text{UP}, -1]$ [(0,0), UP, -1]

Example 1: On-Policy MC Algorithm

 $\tau_{\pi} = [(0,2), \text{UP}, -1], [(0,1), \text{UP}, -1], [(0,0), \text{UP}, -1], [(0,0), \text{UP}, -1]$ [(0,0), UP, -1], [(1,0), UP, -1]

Example 1: On-Policy MC Algorithm

 $\tau_{\pi} = [(0,2), \text{UP}, -1], [(0,1), \text{UP}, -1], [(0,0), \text{UP}, -1], [(0,0), \text{UP}, -1]$ [(0,0), UP, -1], [(1,0), UP, -1], [(2,0), RIGHT, -1]

Example 1: On-Policy MC Algorithm

 $\tau_{\pi} = [(0,2), \text{UP}, -1], [(0,1), \text{UP}, -1], [(0,0), \text{UP}, -1], [(0,0), \text{UP}, -1]$ [(0,0), UP, -1], [(1,0), UP, -1], [(2,0), RIGHT, -1], [(3,0), DOWN, 100]

Example 1: On-Policy MC Algorithm

 $\tau_{\pi} = [(0,2), \text{UP}, -1], [(0,1), \text{UP}, -1], [(0,0), \text{UP}, -1], [(0,0), \text{UP}, -1]$ [(0,0), UP, -1], [(1,0), UP, -1], [(2,0), RIGHT, -1], [(3,0), DOWN, 100] G = 0

Example 1: On-Policy MC Algorithm

 $\tau_{\pi} = [(0,2), \text{UP}, -1], [(0,1), \text{UP}, -1], [(0,0), \text{UP}, -1], [(0,0), \text{UP}, -1]$ [(0,0), UP, -1], [(1,0), UP, -1], [(2,0), RIGHT, -1], [(3,0), DOWN, 100] G = 100

G = 100

Example 1: On-Policy MC Algorithm

	x 0		1		2		3	
У	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	100
4	0	0	0	0				
1	0	0	0	0				
2	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0
3								
J								

 $\tau_{\pi} = [(0,2), \text{UP}, -1], [(0,1), \text{UP}, -1], [(0,0), \text{UP}, -1], [(0,0), \text{UP}, -1] \text{ Returns}(s, a)$ [(0,0), UP, -1], [(1,0), UP, -1], [(2,0), RIGHT, -1], [(3,0), DOWN, 100]

Example 1: On-Policy MC Algorithm

 $\tau_{\pi} = [(0,2), \text{UP}, -1], [(0,1), \text{UP}, -1], [(0,0), \text{UP}, -1], [(0,0), \text{UP}, -1]$ [(0,0), UP, -1], [(1,0), UP, -1], [(2,0), RIGHT, -1], [(3,0), DOWN, 100] G = 100

Example 1: On-Policy MC Algorithm

 $\tau_{\pi} = [(0,2), \text{UP}, -1], [(0,1), \text{UP}, -1], [(0,0), \text{UP}, -1], [(0,0), \text{UP}, -1]$ [(0,0), UP, -1], [(1,0), UP, -1], [(2,0), RIGHT, -1], [(3,0), DOWN, 100] $G = 100 \ A * = \text{DOWN}$

Example 1: On-Policy MC Algorithm

 $\tau_{\pi} = [(0,2), \text{UP}, -1], [(0,1), \text{UP}, -1], [(0,0), \text{UP}, -1], [(0,0), \text{UP}, -1]$ [(0,0), UP, -1], [(1,0), UP, -1], [(2,0), RIGHT, -1], [(3,0), DOWN, 100]

Example 2: Off-Policy TD Algorithm

Example 2: Off-Policy TD Algorithm

```
Q-learning (off-policy TD control) for estimating \pi \approx \pi_*

Algorithm parameters: step size \alpha \in (0,1], small \varepsilon > 0

Initialize Q(s,a), for all s \in \mathbb{S}^+, a \in \mathcal{A}(s), arbitrarily except that Q(terminal, \cdot) = 0

Loop for each episode:
   Initialize S
   Loop for each step of episode:
        Choose A from S using policy derived from Q (e.g., \varepsilon-greedy)
        Take action A, observe R, S'
        Q(S,A) \leftarrow Q(S,A) + \alpha \left[R + \gamma \max_a Q(S',a) - Q(S,A)\right]
        S \leftarrow S'
   until S is terminal
```

$$\alpha = 0.1$$
 $\gamma = 0.9$ $\varepsilon = 0.4$

Example 2: Off-Policy TD Algorithm

```
Q-learning (off-policy TD control) for estimating \pi \approx \pi_*
Algorithm parameters: step size \alpha \in (0,1], small \varepsilon > 0
Initialize Q(s,a), for all s \in \mathbb{S}^+, a \in \mathcal{A}(s), arbitrarily except that Q(terminal,\cdot) = 0
Loop for each episode:
   Initialize S
Loop for each step of episode:
   Choose A from S using policy derived from Q (e.g., \varepsilon-greedy)
   Take action A, observe R, S'
Q(S,A) \leftarrow Q(S,A) + \alpha \left[R + \gamma \max_a Q(S',a) - Q(S,A)\right]
S \leftarrow S'
until S is terminal
```

$$\alpha = 0.1$$
 $\gamma = 0.9$ $\varepsilon = 0.4$

	X	0	1	2	3
У		-1	-2	-2	-2
0	-2	2 0	-3 -1	-4 -1	-3 -1
	-1	-2	-1 -3	-1 0	-1 -3
		-1	-2		
1	-2	2 0	-4 -1		
	-1	-2	-1 0		100
		-2 .	-2	- 1	-2
2	- 3	- -1	-4 -2	-2 0	-3 -1
	-1	_3	-1 -1	-1 - 2	-1 -3
		20	\ 705	\ 05	\ 70-5
3	$\bigcup_{i=1}^{n}$		0) (0	0)(0	0
	-4	00	-400	-40 ⁰	-40 ⁰
		0.5			
			0.5).5
				0.5	

Example 2: Off-Policy TD Algorithm

Q-learning (off-policy TD control) for estimating $\pi \approx \pi_*$ Algorithm parameters: step size $\alpha \in (0,1]$, small $\varepsilon > 0$ Initialize Q(s,a), for all $s \in S^+, a \in \mathcal{A}(s)$, arbitrarily except that $Q(terminal, \cdot) = 0$ Loop for each episode: Initialize SLoop for each step of episode: Choose A from S using policy derived from Q (e.g., ε -greedy) Take action A, observe R, S' $Q(S,A) \leftarrow Q(S,A) + \alpha \left[R + \gamma \max_a Q(S',a) - Q(S,A)\right]$ $S \leftarrow S'$ until S is terminal

$$\alpha = 0.1 \quad \gamma = 0.9 \quad \varepsilon = 0.4$$

 $S = (0,2)$

	x 0	1	2	3	
У	- 1	-2	-2	-2	
0	-2 0	- 3 - 1	-4 -1	-3 -1	
	-1 -2	-1 -3	-1 0	-1 -3	
	-1	-2			
1	-2 0	-4 -1			
	-1 -2	-1 0		100	
	-2	-2	-1	-2	
2	-3 = 1	-4 -2	-2 0	-3 -1	
	-1 -3	-1 −1	-1 -2	-1 -3	
	105	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\ 05	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
3	0	0	0	0	
	-400	-40 ° 7	-40 ° 7	-40°	
	0.5				
		0.5).5	
		v	0.5	*	

$$\alpha = 0.1$$
 $\gamma = 0.9$ $\varepsilon = 0.4$
$$S = (0,2)$$
 $c \sim U_{[0,1]} = 0.42 > \varepsilon \Rightarrow A = RIGHT$

	X	0	1	2	3
У		- 1	-2	-2	- 2
0	-2	2 0	-3 -1	-4 -1	-3 -1
	-1	- 2	-1 -3	-1 0	-1 -3
		-1	-2		
1	-2	2 0	-4 -1		
	-1	-2	-1 0		100
		-2.	-2	-1	-2
2	-3	= -1	-4 -2	-2 0	-3 -1
	-1	_3	-1 -1	-1 - 2	-1 -3
		20	\ \psi	705	\ 70-\$
3	$\bigcup_{i=1}^{n}$		0) (0	0)(0	0
	-4	00	-40 ⁰	-40 ⁰	-40 ⁰
		0.5			
			0.5).5
			•	0.5	•

until S is terminal

$$\alpha = 0.1 \quad \gamma = 0.9 \quad \varepsilon = 0.4$$
 $S = (0,2) \quad c \sim U_{[0,1]} = 0.42 > \varepsilon \Rightarrow A = \text{RIGHT} \quad R = -0.1$ $S' = (1,2)$

	x 0	1	2	3
У	- 1	-2	- 2	-2
0	-2 0	-3 -1	-4 -1	-3 -1
	-1 -2	-1 -3	-1 0	-1 -3
	- 1	-2		
1	-2 0	-4 -1		
	-1 -2	-1 0		100
	-2	-2	- 1	-2
2	-3 -1	-4 $=$ -2	-2 0	-3 -1
	-1 -3	-1"1"	-1 -2	-1 -3
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\ 0 \	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
3	0	0) 0	0	0
	-400	-40 0	-40 ⁰	-40 ⁰
	0.5		_	
		0.5).5
			0.5	

$$\alpha = 0.1 \quad \gamma = 0.9 \quad \varepsilon = 0.4$$
 $S = (0,2) \quad c \sim U_{[0,1]} = 0.42 > \varepsilon \Rightarrow A = \text{RIGHT} \quad R = -0.1$
 $S' = (1,2)$
 $Q\left((0,2), \text{RIGHT}\right) \leftarrow -1 + 0.1 \cdot [-1 + 0.9 \cdot 0 - (-1)] = -1.09$

	x 0	1	2	3
У	-1	- 2	-2	- 2
0	-2 0	-3 -1	-4 -1	-3 -1
	-1 -2	-1 -3	-1 0	-1 -3
1	-1 -2 0 -1 -2	-2 -4 -1 -1 0		100
2	-2 -3 -1.09 -1-3	-4-2	-1 -2 0 -1 -2	-2 -3 -1 -1 -3
3	0 0 0 -400	0 0 0 -400	0 0 0 -400	0 0 0 -400
	0.5	0.5).5

Example 2: Off-Policy TD Algorithm

Q-learning (off-policy TD control) for estimating $\pi \approx \pi_*$ Algorithm parameters: step size $\alpha \in (0,1]$, small $\varepsilon > 0$ Initialize Q(s,a), for all $s \in \mathbb{S}^+, a \in \mathcal{A}(s)$, arbitrarily except that $Q(terminal, \cdot) = 0$ Loop for each episode: Initialize SLoop for each step of episode: Choose A from S using policy derived from Q (e.g., ε -greedy) Take action A, observe R, S' $Q(S,A) \leftarrow Q(S,A) + \alpha \left[R + \gamma \max_a Q(S',a) - Q(S,A)\right]$ $S \leftarrow S'$ until S is terminal

$$\alpha = 0.1 \quad \gamma = 0.9 \quad \varepsilon = 0.4$$

 $S = (1,2)$

	x 0	1	2	3
У	-1	- 2	-2	-2
0	-2 0	-3 -1	-4 -1	-3 -1
	-1 -2	-1 -3	-1 0	-1 -3
	- 1	-2		
1	-2 0	-4 -1		
	-1 -2	-1 0		100
	-2	-2	- 1	-2
2	-3 -1.09	-4 $=$ -2	-2 0	-3 -1
	-1 -3	-1 4	-1 -2	-1 -3
	\ 05	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\ 05	\ 0 \
3	0	0	0	0
	-40 ⁰	-40 °	-40 °	-40 ⁰
	0.5			
		0.5).5

$$\alpha = 0.1 \quad \gamma = 0.9 \quad \varepsilon = 0.4$$

$$S = (1,2) \quad c \sim U_{[0,1]} = 0.82 > \varepsilon \Rightarrow A = \text{DOWN}$$

	X	0	1	2	3
У		- 1	-2	- 2	- 2
0	-2	0	-3 -1	-4 -1	-3 -1
	-1	-2	-1 -3	-1 0	-1 -3
1	-2 - 1	-1 0 -2	-2 -4 -1 -1 0		100
2	-3 -1	-2 -1.09 -3	-4 -1 -1	-1 -2 0 -1 -2	-2 -3 -1 -1 -3
3	0 -4(0	0 0 0 -400	0 0 0 -400	0 0 -40 0 -40
		0.5	0.5		0.5

$$\alpha = 0.1 \quad \gamma = 0.9 \quad \varepsilon = 0.4$$

$$S = (1,2) \quad c \sim U_{[0,1]} = 0.82 < \varepsilon \Rightarrow A = \text{DOWN} \qquad R = -40$$

$$S' = (1,3)$$

	x 0	1	2	3
У	- 1	-2	-2	-2
0	-2 0	-3 -1	-4 -1	-3 -1
	-1 -2	-1 -3	-1 ⁰	-1 -3
	- 1	-2		
1	-2 0	-4 -1		
	-1 -2	-1 0		100
	-2	-2	- 1	- 2
2	-3 -1.09	-4 -2	-2 0	-3 -1
	-1 -3	-1 - 1	-1 - 2	-1 -3
3		0		0 0
	-400	-400	-40 ° 7	-40 ⁰
	0.5	0.5).5

$$\alpha = 0.1 \quad \gamma = 0.9 \quad \varepsilon = 0.4$$
 $S = (1,2) \quad c \sim U_{[0,1]} = 0.82 < \varepsilon \Rightarrow A = \text{DOWN} \quad R = -40$
 $S' = (1,3)$
 $Q((1,2), \text{DOWN}) \leftarrow -1 + 0.1 \cdot [-40 + 0.9 \cdot 0 - (-1)] = -4.9$

	x 0	1	2	3
У	- 1	-2	- 2	- 2
0	-2 0	-3 -1	-4 -1	-3 -1
	-1 -2	-1 -3	-1 0	-1 -3
	- 1	-2		
1	-2 0	-4 -1		
	-1 -2	-1 0		100
	-2	-2	-1	-2
2	-3 -1.09	-4 -2	-2 0	-3 -1
	_1 _ 3	-1 -4 .9	_1 2	_1 2
		1 -4.9	-1 -2	-1 -3
3	0 0 0 -400	0 0 0 -40 0	0 0 0 -400	0 0 0 -400

Example 2: Off-Policy TD Algorithm

Q-learning (off-policy TD control) for estimating $\pi \approx \pi_*$ Algorithm parameters: step size $\alpha \in (0,1]$, small $\varepsilon > 0$ Initialize Q(s,a), for all $s \in S^+, a \in \mathcal{A}(s)$, arbitrarily except that $Q(terminal, \cdot) = 0$ Loop for each episode: Initialize SLoop for each step of episode: Choose A from S using policy derived from Q (e.g., ε -greedy) Take action A, observe R, S' $Q(S,A) \leftarrow Q(S,A) + \alpha \left[R + \gamma \max_a Q(S',a) - Q(S,A)\right]$ $S \leftarrow S'$ until S is terminal

$$\alpha = 0.1 \quad \gamma = 0.9 \quad \varepsilon = 0.4$$

 $S = (1,3)$

	x 0	1	2	3
У	- 1	-2	-2	-2
0	-2 0	-3 -1	-4 -1	-3 -1
	-1 -2	-1 -3	-1 0	-1 -3
	-1	-2		
1	-2 0	-4 -1		
	-1 -2	-1 0		100
	-2	-2	- 1	-2
2	-3 -1.09	-4 -1	-2 0	-3 -1
	-1 -3	-1 -4.9	-1 -2	-1 -3
3				
	-400	-400	-40 ⁰	-40 ⁰
'	0.5	0.5).5

Example 2: Off-Policy TD Algorithm

Q-learning (off-policy TD control) for estimating $\pi \approx \pi_*$ Algorithm parameters: step size $\alpha \in (0,1]$, small $\varepsilon > 0$ Initialize Q(s,a), for all $s \in \mathbb{S}^+, a \in \mathcal{A}(s)$, arbitrarily except that $Q(terminal, \cdot) = 0$ Loop for each episode: Initialize SLoop for each step of episode: Choose A from S using policy derived from Q (e.g., ε -greedy) Take action A, observe R, S' $Q(S,A) \leftarrow Q(S,A) + \alpha \left[R + \gamma \max_a Q(S',a) - Q(S,A)\right]$ $S \leftarrow S'$ until S is terminal

$$\alpha = 0.1 \quad \gamma = 0.9 \quad \varepsilon = 0.4$$

 $S = (0,2)$

	x 0	1	2	3
У	-1	-2	-2	-2
0	-2 0	-3 -1	-4 -1	-3 -1
	-1 -2	-1 -3	-1 0	-1 -3
1	-1 -2 0	-2 $-4 -1$		
	-1 -2	-1 0		100
2	-3 -1 -1 -3	-2 -4 -1 - 1 0	-1 -2 0 -1 -2	-2 -3 -1 -1 -3
3	0 0 0 -400	0 0 0 -400	0 0 0 -400	0 0 0 -400
	0.5	0.5	0.5	0.5

Conclusions

- We have shown on-policy MC methods and off-policy Q-Learning
- This does not mean that all MC methods are on-policy and all TD methods are off-policy
 - Off-policy MC methods: Utilise importance sampling
 - SARSA (Step-Action-Reward-Step-Action): On-policy TD method
- We have seen 1-step TD methods:
 - n-step TD methods bridge the gap between MC and TD paradigms

Average

RMS error

and first 10

episodes

n-step TD performance with varying n — Intermediate solutions may be the best [Sutton & Barto 2018]

Conclusions

Criteria	Monte Carlo Methods	Temporal Difference Methods
Bias vs Variance	low bias, high variance	high bias, low variance
Online		
Bootstrapping		✓ because v _t is based off of v _{t+1}
Estimation		
On-Policy	On-policy MC	SARSA
Off-Policy	Off-policy MC with importance sampling	Q-learning
Past vs Future Future data	past experiences	future (models MDP)

Beyond Tabular Methods

- How to handle large multi-dimensional state-spaces?
- Can we expect similar states in a large state-space to be reasonably similar?
 Is interpolation possible?
- How to handle continuous state-spaces?
 - E.g. representing angles
- How to handle continuous actions?
 - E.g. representing force
- Curse of dimensionality
- Can we utilise (deep) neural networks somehow?

Outline

- Introduction
- Reinforcement Learning Formalisation
- Model-Free Reinforcement Learning
- Value Function Approximation
 - Introduction
 - Supervised Objective
 - Gradient and Semi-Gradient
 - Example 1: MC $\hat{v} \approx v_{\pi}$ Evaluation
 - Example 2: TD $\hat{v} \approx v_{\pi}$ Evaluation
 - Conclusions
- Policy Gradient Methods

Introduction

- Solutions presented so far were tabular:
 - Every state $s \in S$ has an entry V(s)
 - Every state-action pair $s \in S$, $a \in A$ has an entry Q(s, a) (see slide 67)
- Three main problems:
 - Large (but potentially discrete) state-spaces:
 - Backgammon 10²⁰ states
 - Go 10⁷⁰
 - Continuous state-spaces
 - Physical properties: distances, velocities, angles, ...
 - Robotics applications
 - Continuous actions

Introduction

- Idea: Use supervised learning to train the function approximator
 - Artificial Neural Networks (ANN) + Stochastic Gradient Descent (SGD)

Left: State-Value function approximation for a given state; Middle: Action-Value function approximation for a given state and action pair; Action-Value function approximation for each action for a given state

Value Function Approximation Supervised Objective

Use standard Mean Squared Error (MSE) Loss:

$$J(\mathbf{w}) \doteq \sum_{s \in S} \mu(s) \left[v_{\pi}(s) - \hat{v}(s; \mathbf{w}) \right]^{2}$$

• Scale each error by its importance as captured by the state visitation frequency under policy π :

$$\eta(s) = h(s) + \sum_{\bar{s}} \eta(\bar{s}) \sum_{a} \pi(a \mid \bar{s}) p(s \mid \bar{s}, a)$$

$$\mu(s) = \frac{\eta(s)}{\sum_{s'} \eta(s')}$$
 on-policy distribution

Gradient and Semi-Gradient Methods

$$J(\mathbf{w}) \doteq \sum_{s \in S} \mu(s) \left[v_{\pi}(s) - \hat{v}(s; \mathbf{w}) \right]^{2}$$

Combined with SGD:

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t - \frac{1}{2} \alpha \nabla \left[v_{\pi}(S_t) - \hat{v}(S_t; \mathbf{w}_t) \right]^2$$
$$= \mathbf{w}_t + \alpha \left[v_{\pi}(S_t) - \hat{v}(S_t; \mathbf{w}_t) \right] \nabla \hat{v}(S_t; \mathbf{w}_t)$$

$$\nabla f(\mathbf{w}) \doteq \left(\frac{\partial f(\mathbf{w})}{\partial w_1}, \frac{\partial f(\mathbf{w})}{\partial w_2}, \dots, \frac{\partial f(\mathbf{w})}{\partial w_d}\right)^{\top}$$

Gradient and Semi-Gradient Methods

Use standard Mean Squared Error (MSE) Loss:

$$J(\mathbf{w}) \doteq \sum_{s \in S} \mu(s) \left[v_{\pi}(s) - \hat{v}(s; \mathbf{w}) \right]^{2}$$

• **Problem**: As this is not an actual supervised learning setting, we do not have access to $v_{\pi}(s)!$

Gradient and Semi-Gradient Methods

• Use standard Mean Squared Error (MSE) Loss:

$$J(\mathbf{w}) \doteq \sum_{s \in S} \mu(s) \left[v_{\pi}(s) - \hat{v}(s; \mathbf{w}) \right]^{2}$$

• **Problem**: As this is not an actual supervised learning setting, we do not have access to $v_{\pi}(s)!$

$$\begin{aligned} \mathbf{w}_{t+1} &= \mathbf{w}_t + \alpha \left[U_t - \hat{v}(S_t; \mathbf{w}_t) \right] \nabla \hat{v}(S_t; \mathbf{w}_t) \\ U_t &= \begin{cases} G_t & \text{MC approach } - \text{ true gradient} \\ R_{t+1} + \gamma \hat{v}(S_{t+1}; \mathbf{w}_t) & \text{TD approach } - \text{ semi-gradient} \end{cases} \end{aligned}$$

Example 1: MC $\hat{v} \approx v_{\pi}$ Evaluation

Gradient Monte Carlo Algorithm for Estimating $\hat{v} \approx v_{\pi}$

Input: the policy π to be evaluated

Input: a differentiable function $\hat{v}: \mathbb{S} \times \mathbb{R}^d \to \mathbb{R}$

Algorithm parameter: step size $\alpha > 0$

Initialize value-function weights $\mathbf{w} \in \mathbb{R}^d$ arbitrarily (e.g., $\mathbf{w} = \mathbf{0}$)

Loop forever (for each episode):

Generate an episode $S_0, A_0, R_1, S_1, A_1, \ldots, R_T, S_T$ using π

Loop for each step of episode, $t = 0, 1, \dots, T - 1$:

$$\mathbf{w} \leftarrow \mathbf{w} + \alpha \left[G_t - \hat{v}(S_t, \mathbf{w}) \right] \nabla \hat{v}(S_t, \mathbf{w})$$

Example 2: TD $\hat{v} \approx v_{\pi}$ **Evaluation**

Semi-gradient TD(0) for estimating $\hat{v} \approx v_{\pi}$

Input: the policy π to be evaluated

Input: a differentiable function \hat{u} , S^{+} $\vee \mathbb{D}^{d}$

Input: a differentiable function $\hat{v}: \mathbb{S}^+ \times \mathbb{R}^d \to \mathbb{R}$ such that $\hat{v}(\text{terminal},\cdot) = 0$

Algorithm parameter: step size $\alpha > 0$

Initialize value-function weights $\mathbf{w} \in \mathbb{R}^d$ arbitrarily (e.g., $\mathbf{w} = \mathbf{0}$)

Loop for each episode:

Initialize S

Loop for each step of episode:

Choose $A \sim \pi(\cdot|S)$

Take action A, observe R, S'

$$\mathbf{w} \leftarrow \mathbf{w} + \alpha \left[R + \gamma \hat{v}(S', \mathbf{w}) - \hat{v}(S, \mathbf{w}) \right] \nabla \hat{v}(S, \mathbf{w})$$

$$S \leftarrow S'$$

until S is terminal

Outline

- Introduction
- Reinforcement Learning Formalisation
- Model-Free Reinforcement Learning
- Interlude: RL Taxonomy
- Value Function Approximation
- Policy Gradient Methods
 - Introduction
 - The Policy Gradient Theorem: Statement
 - The Policy Gradient Theorem: Derivation
 - REINFORCE Algorithm
 - Actor-Critic Methods
 - Policy Parametrisation for Continuous Actions
 - Conclusions

Introduction

- So far policies were implicit we modelled state value functions; policy followed states with high values
- Idea: Explicitly model the policy with an ANN

Left: Deterministic policy that produces an action for a given state; Right: Stochastic policy that produces a distribution over actions given the state

The Policy Gradient Theorem: Statement

• We wish to maximise the performance under policy π parameterised by θ over an entire episode:

$$J(\boldsymbol{\theta}) \doteq v_{\pi_{\boldsymbol{\theta}}}(s_0)$$

$$\nabla J(\boldsymbol{\theta}) = \mathbb{E}_{s \sim \mu_{\pi}, a \sim \pi} \left[q_{\pi}(s, a) \, \nabla \ln \pi(a \, | \, s; \boldsymbol{\theta}) \right]$$

- We can now improve performance using the gradient of the policy represented as an ANN, but we still have $q_{\pi}(s, a)$:
 - We can explicitly model $q_{\pi}(s, a) \approx \hat{q}(s, a; \mathbf{w})$
 - We can replace it with the return G_t as $\mathbb{E}_{\pi}[G_t | S_t = s, A_t = a] = q_{\pi}(S_t, A_t)$:

$$\nabla J(\boldsymbol{\theta}) = \mathbb{E}_{\pi} \left[G_t \nabla \ln \pi (A_t | S_t; \boldsymbol{\theta}) \right] \quad \mathsf{REINFORCE}$$

The Policy Gradient Theorem: Derivation

$$\nabla v_{\pi}(s) = \nabla \left[\sum_{a} \pi(a \mid s; \boldsymbol{\theta}) q_{\pi}(s, a) \right] \text{ (slide 23)}$$

$$= \sum_{a} \left[\nabla \pi(a \mid s; \boldsymbol{\theta}) q_{\pi}(s, a) + \pi(a \mid s; \boldsymbol{\theta}) \nabla q_{\pi}(s, a) \right] \text{ (derivative product rule)}$$

$$= \sum_{a} \left[\nabla \pi(a \mid s; \boldsymbol{\theta}) q_{\pi}(s, a) + \pi(a \mid s; \boldsymbol{\theta}) \nabla \left[r(s, a) + \sum_{s'} p(s' \mid s, a) v_{\pi}(s') \right] \right]$$
 (slide 23)

$$= \sum_{a} \left[\nabla \pi(a \mid s; \boldsymbol{\theta}) q_{\pi}(s, a) + \pi(a \mid s; \boldsymbol{\theta}) \sum_{s'} p(s' \mid s, a) \nabla v_{\pi}(s') \right] \text{ (recursion)}$$

The Policy Gradient Theorem: Derivation

$$\nabla v_{\pi}(s) = \nabla \left[\sum_{a} \pi(a \mid s; \boldsymbol{\theta}) q_{\pi}(s, a) \right] \text{ (slide 22)}$$

$$= \sum_{a} \left[\nabla \pi(a \mid s; \boldsymbol{\theta}) q_{\pi}(s, a) + \pi(a \mid s; \boldsymbol{\theta}) \nabla q_{\pi}(s, a) \right] \text{ (derivative product rule)}$$

$$= \sum_{a} \left[\nabla \pi(a \mid s; \boldsymbol{\theta}) q_{\pi}(s, a) + \pi(a \mid s; \boldsymbol{\theta}) \nabla \left[r(s, a) + \sum_{s'} p(s' \mid s, a) v_{\pi}(s') \right] \right] \text{ (slide 22)}$$

$$= \sum_{a} \left[\nabla \pi(a \mid s; \boldsymbol{\theta}) q_{\pi}(s, a) + \pi(a \mid s; \boldsymbol{\theta}) \sum_{s'} p(s' \mid s, a) \nabla v_{\pi}(s') \right] \text{ (recursion)}$$

$$= \sum_{x \in S} \sum_{k=0}^{\infty} P(s \to x, k, \pi) \sum_{a} \nabla \pi(a \mid x; \theta) q_{\pi}(x, a) \text{ (unroll recursion)}$$

The Policy Gradient Theorem: Derivation

$$\nabla J(\boldsymbol{\theta}) = \nabla v_{\pi}(s_0)$$

$$= \sum_{s} \left(\sum_{k=0}^{\infty} P(s_0 \to s, k, \pi) \right) \sum_{a} \nabla \pi(a \mid s; \theta) q_{\pi}(s, a)$$

$$= \sum_{s} \eta_{\pi}(s) \sum_{a} \nabla \pi(a \mid s; \theta) q_{\pi}(s, a) \quad \text{(slide 86)}$$

$$= \sum_{s'} \eta_{\pi}(s') \sum_{s} \mu_{\pi}(s) \sum_{a} \nabla \pi(a \mid s; \theta) q_{\pi}(s, a) \quad \text{(slide 86)}$$

$$\propto \sum_{s'} \mu_{\pi}(s) \sum_{s} \nabla \pi(a \mid s; \theta) q_{\pi}(s, a)$$

Policy Gradient Methods The Policy Gradient Theorem: Derivation

$$\nabla J(\boldsymbol{\theta}) = \nabla v_{\pi}(s_0)$$

$$\propto \sum_{s} \mu_{\pi}(s) \sum_{a} \nabla \pi(a \mid s; \boldsymbol{\theta}) q_{\pi}(s, a)$$

grad log derivative trick or eligibility vector

$$= \sum_{s} \mu_{\pi}(s) \sum_{a} \pi(a \mid s; \boldsymbol{\theta}) q_{\pi}(s, a) \frac{\nabla \pi(a \mid s; \boldsymbol{\theta})}{\pi(a \mid s; \boldsymbol{\theta})} \text{ and } \nabla \ln \pi(a \mid s; \boldsymbol{\theta}) = \frac{1}{\pi(a \mid s; \boldsymbol{\theta})} \cdot \nabla \pi(a \mid s; \boldsymbol{\theta})$$

and
$$\nabla \ln \pi(\mathbf{a} \mid \mathbf{s}; \boldsymbol{\theta}) = \frac{1}{\pi(\mathbf{a} \mid \mathbf{s}; \boldsymbol{\theta})} \cdot \nabla \pi(\mathbf{a} \mid \mathbf{s}; \boldsymbol{\theta})$$

$$= \sum_{s} \mu_{\pi}(s) \sum_{a} \pi(a \mid s) q_{\pi}(s, a) \nabla \ln \pi(a \mid s; \boldsymbol{\theta})$$

$$= \mathbb{E}_{s \sim \mu_{\pi}, a \sim \pi} \left[q_{\pi}(s, a) \nabla \ln \pi(a \mid s; \boldsymbol{\theta}) \right]$$

$$J(\boldsymbol{\theta}) \doteq v_{\pi_{\boldsymbol{\theta}}}(s_0)$$

$$J(\boldsymbol{\theta}) \doteq v_{\pi_{\boldsymbol{\theta}}}(s_0)$$

$$\nabla J(\boldsymbol{\theta}) = \mathbb{E}_{s \sim \mu_{\pi}, a \sim \pi_{\pi}} \left[q_{\pi}(s, a) \, \nabla \ln \pi(a \, | \, s; \boldsymbol{\theta}) \right]$$

Policy Gradient Methods REINFORCE Algorithm

$$\nabla J(\boldsymbol{\theta}) = \mathbb{E}_{\pi} \left[q_{\pi}(s, a) \nabla \ln \pi(a \mid s; \boldsymbol{\theta}) \right]$$

$$= \mathbb{E}_{\pi} \left[G_{t} \nabla \ln \pi(A_{t} \mid S_{t}; \boldsymbol{\theta}) \right] \text{ as } q_{\pi} \doteq \mathbb{E}_{\pi} \left[G_{t} \mid A_{t} = a, S_{t} = s \right] \text{ (Slide 22)}$$

$$\theta_{t+1} \doteq \theta_t + \alpha G_t \nabla \ln \pi (A_t | S_t; \theta_t)$$
 Gradient Ascent Step

REINFORCE: Monte-Carlo Policy-Gradient Control (episodic) for π_*

Input: a differentiable policy parameterization $\pi(a|s, \theta)$

Algorithm parameter: step size $\alpha > 0$

Initialize policy parameter $\boldsymbol{\theta} \in \mathbb{R}^{d'}$ (e.g., to **0**)

Loop forever (for each episode):

Generate an episode $S_0, A_0, R_1, \ldots, S_{T-1}, A_{T-1}, R_T$, following $\pi(\cdot|\cdot, \boldsymbol{\theta})$

Loop for each step of the episode t = 0, 1, ..., T - 1:

$$G \leftarrow \sum_{k=t+1}^{T} \gamma^{k-t-1} R_k \boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \alpha \gamma^t G \nabla \ln \pi (A_t | S_t, \boldsymbol{\theta})$$
 (G_t)

Actor-Critic Methods

- Speed-up learning and reduce variance by utilising bootstrapping
- Use $\hat{q}(s, a; \mathbf{w})$ or $\hat{v}(s; \mathbf{w})$ to estimate the TD residual δ_t

$$\boldsymbol{\theta}_{t+1} \doteq \boldsymbol{\theta}_t + \alpha \left(R_{t+1} + \gamma \hat{v}(S_{t+1}; \mathbf{w}) - \hat{v}(S_t; \mathbf{w}) \right) \nabla \ln \pi (A_t | S_t; \boldsymbol{\theta}_t)$$

$$= \boldsymbol{\theta}_t + \alpha \delta_t \ln \pi (A_t | S_t; \boldsymbol{\theta}_t)$$
One-step Actor-Critic (epison

One-step Actor-Critic (episodic), for estimating $\pi_{\theta} \approx \pi_*$

```
Input: a differentiable policy parameterization \pi(a|s, \theta)
Input: a differentiable state-value function parameterization \hat{v}(s, \mathbf{w})
Parameters: step sizes \alpha^{\theta} > 0, \alpha^{\mathbf{w}} > 0
Initialize policy parameter \boldsymbol{\theta} \in \mathbb{R}^{d'} and state-value weights \mathbf{w} \in \mathbb{R}^{d} (e.g., to \mathbf{0})
Loop forever (for each episode):
    Initialize S (first state of episode)
    I \leftarrow 1
    Loop while S is not terminal (for each time step):
          A \sim \pi(\cdot|S, \boldsymbol{\theta})
          Take action A, observe S', R
          \delta \leftarrow R + \gamma \hat{v}(S', \mathbf{w}) - \hat{v}(S, \mathbf{w})
                                                                        (if S' is terminal, then \hat{v}(S',\mathbf{w}) \doteq 0)
          \mathbf{w} \leftarrow \mathbf{w} + \alpha^{\mathbf{w}} \delta \nabla \hat{v}(S, \mathbf{w})
         \boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \alpha^{\boldsymbol{\theta}} I \delta \nabla \ln \pi(A|S, \boldsymbol{\theta})
         I \leftarrow \gamma I
          S \leftarrow S'
```

Policy Parametrisation for Continuous Actions

- Define policy as the Gaussian probability density over the real-valued actions
- Use function approximation for $\mu(s; \boldsymbol{\theta}_{\mu})$ and $\sigma^2(s; \boldsymbol{\theta}_{\sigma})$, with potentially the same feature extractor base $\mathbf{x}(s)$
- We can either learn the variance, or keep it fixed to ensure sufficient exploration throughout learning

$$\pi(a \mid s; \boldsymbol{\theta}) \doteq \frac{1}{\sigma(s; \boldsymbol{\theta}_{\sigma}) \sqrt{2\pi}} e^{\left(-\frac{(a - \mu(s; \boldsymbol{\theta}_{\mu}))^{2}}{2\sigma(s; \boldsymbol{\theta}_{\sigma})^{2}}\right)}, \, \boldsymbol{\theta} = [\boldsymbol{\theta}_{\mu}, \boldsymbol{\theta}_{\sigma}]^{T}$$

$$\mu(s, \boldsymbol{\theta}_{\mu}) \doteq \boldsymbol{\theta}_{\mu}^{\mathsf{T}} \mathbf{x}(s), \ \sigma(s, \boldsymbol{\theta}_{\sigma}) \doteq e^{(\boldsymbol{\theta}_{\sigma}^{\mathsf{T}} \mathbf{x}(s))}$$

Policy Gradient (Monte Carlo) vs TD Learning

Criteria	Policy Gradient	Temporal Difference Methods
Bias vs Variance	low bias, high variance	high bias, low variance
Online		
Bootstrapping		▼ because v _t is based off of v _{t+1}
Estimation		
On-Policy		
Off-Policy		
Exploration vs Exploitation	may be naturally handled	not naturally handled
Past vs Future Future data	past experiences	future (models MDP)
Convergence speed		
Convergence guarantees & stability*		
Sample efficiency		
Stochastic policy representation		
Applicability to continuous action spaces		

The Deadly Triad: Bootstrapping & Function approximation & Off-policy

Conclusions

- Stronger convergence guarantees compared to TD function approximation methods due to the Policy Gradient Theorem
- Naturally applicable on continuous action spaces
- Can represent stochastic policies and approach deterministic policies asymptomatically
- Most modern state of the art algorithms belong to either Actor-Critic methods which combine both Monte Carlo and TD approaches

Next Steps Di Arasa de Bar

RL Areas and Papers

- State of the art model-free algorithms:
 - Proximal Policy Optimisation (Schulman et al, 2017), Soft Actor Critic (Haarnoja et al, 2018)
- Model-based approaches:
 - Dyna-Q (Sutton and Barto 2018), Monte Carlo Tree Search (Sutton and Barto, 2018), World Models (Ha and Schmidhuber, 2018)
- Hierarchical reinforcement learning:
 - Between MDPs and Semi-MDPs (The options framework) (Sutton et al. 1999)
- Intrinsically motivated reinforcement learning:
 - Intrinsic Motivation and Reinforcement Learning (Barto, 2013), Curiositydriven Exploration by Self-supervised Prediction (Pathak et al, 2017)

(~~~)~ Thanks! ~ (°∀° ~)

