Reinforcement Learning

A gentle introduction

Dorde Bozic
PhD Student
University of Bath

- djordjebbozic@gmail.com

mailto:djordjebbozic@gmail.com

Who am |1?

2 /107

ASIMILX

* PhD student at Bath Reinforcement Learning Laboratory under professor
Ozglr Simsek

 Research interests: transfer learning in reinforcement learning, continua
reinforcemen

learning, hierarchical

Porde Bozic
PhD Student
University of Bath

- djordjebbozic@gmail.com

t learning, intrinsically motivation

Kirkowall
(7]
w
(=) Elgin
= Portree Inveroness
m o
. Abegieen
SCOTLAND
w
as
Dundee
o
o St Andrews
Glasgow Edlpgurgh
O
Londonderry. .
Derry, umted & Newcastle
, Kingdom " ueoniyne
NORTHERN Durham
IRELAND /
Sligo
o Isle of Man
o)
DungaD":o _— Great Britain
e Manchester
Galway - Dug"" S P 0
o : Liverpool
ireland P Sheffield

Limerick Kilkenny
o o

Tralee Waterford-
e} o
Dingle o 5 !
i C
Killarney 2

A “ Norwich
Birmingham : (o)
(@)
Camtéridge
WALES ENGLAND y
Oxford
London
o (O}
Cardiff
Exeter
o
Plymouth
[o)

mailto:djordjebbozic@gmail.com

O ML

e [Sutton & Barto 2018]: Sutton, Richard S. and Barto, Andrew G..
Reinforcement Learning: An Introduction. Second : The MIT Press, 2018 .

* [Russel & Norvig 2010]: Russell, S. & Norvig, P. (2010), Artificial Intelligence: A
Modern Approach , Prentice Hall.

Resources

4 /107

reaction action
Environment
s Tunnelling strategy discovered by DQN on Breakout Atari
environment

Agent — Environment
Interaction

Enext state action

:reward r . a
: Environment

Transition
model p(s’,r|s)\a

Agent — Environment
Interaction

5 /107

Q-Learning

SARSA, PG Reinforcement e .

AC. A3C Learning ~ DON ° \
GAIL DDPG
RAIL MA-DRL.

Deep Reinforcemé
' Learning

SVM : |
AdaBoost Slljzervllsed U"EUPeflvlsed
LR, SVR arning earning
K-NN, RF K Means
SRl Machine Learning PCA
ICA

Taxonomy of contemporary ML [Yan et al. 2019]

6 /107

Introduction

W [1] Aiphastar

[s] LiquidTLO

- Stratospheric Balloon Navigation, Bellemare et
al, 2020

Alpha Go, Silver et al. 2016

Chess Shogi Go

N 3 4 ,I
xil 5, i e dff 0.10s 0.40's 0.45s 0.47s 0.60 s 0.90's
SO\ i 0 0%y, X P
s‘ ~ T8 ’ S « N N N\ X \ N\
- (S \,\ - ‘..’\/V N - ’ o \.,\7\ . ® e
‘ ‘\\h‘-;_{"’:.‘i' Ny '\‘\\:u ~\';'
%
AlphaZero vs. Stockfish AlphaZero vs. EImo AlphaZero vs. AGO - - e - Y, N\
TCV#70915 p—
-100- /
W:29.0% D:70.6% L:0.4% W:84.2% D:2.2% L:13.6% W:68.9% L:31.1% ®A ol]
I- Axis z (m) 0 \\ -/
X-point z (m) ~0.59 B
W:2.0% D:97.2% L:0.8% W:98.2% D:0.0% L:1.8% W:53.7% L:46.3% _0'2_
Shape RMSE (cm) 0 ‘
200
i : — Growth rate y (H2) e ‘
i i = s . &) O——— T T T — ———
AZ wins Il AZdraws AZ loses AZ white O AZ black @ 4637754 @ 0openAl 02 04 06 08 1o Inside view at 0.6 s

190/ 675

Time since breakdown (s)

Alpha Zero, Silver et al. 2017 OpenAl Five, Barner et al. 2019 Magnetic Control of Tokamak Plasmas, Degrave
et al, 2022

7 /107

ol

Outline

* |Introduction
* Reinforcement Learning Formalisation
 Model-Free Reinforcement Learning

* Value Function Approximation -
* Policy Gradient Methods

— "Deep RL”

Outline

e |ntroduction

 Reinforcement Learning Formalisation
 Agents and Environments
« Markov Decision Process
« Reward and Return
 Policy
e State-Value Function
 Action-Value Function
 Optimal Policy
 Optimal Value Functions
 Bellman Equations and Planning
 Generalised Policy Iteration (GPI)
 Exploration-Exploitation Trade-Off

9 /107

RL Formalisation
Agents and Environments

* Agent interacts with the environment
 Rewards given as feedback
* Different kind of supervision:

e Samples not |.I.D

* | earning signal may be delayed

S
—-
P T
E «¢
' —————

5141

Lunar Lander, Breakout, MuJoCo Humanoid, Hand [Open Al Gym

Agent-Environment Interaction [Sutton & Barto 2018] Environment suite]

10/ 107

RL Formalisation O PEIMLY
Agents and Environments

e Environment characteristics?

» Episodic (finite-horizon) vs. Continuing
(indefinite-horizon)

e Deterministic vs. Stochastic Tormina
* Fully vs. Partially observable
e Discrete vs. Continuous ul l 100__Goat
-40 -40 -40 -40
&5
>o.5 0.54

0.5

Agent-Environment Interaction [Sutton & Barto
2018]

11/ 107

RL Formalisation O\

2L PSImL X

Un

Agents and Environments

e Environment characteristics?

» Episodic (finite-horizon) vs. Continuing
(indefinite-horizon)

e Deterministic vs. Stochastic
* Fully vs. Partially observable
 Discrete vs. Continuous

Agent-Environment Interaction [Sutton & Barto
2018]

12/ 107

RL Formalisation

Agents and Environments

e Environment characteristics?

» Episodic (finite-horizon) vs. Continuing
(indefinite-horizon)

e Deterministic vs. Stochastic
* Fully vs. Partially observable
 Discrete vs. Continuous

Agent-Environment Interaction [Sutton & Barto
2018]

13/ 107

RL Formalisation

Agents and Environments

 Environment characteristics?
o Stochastic, multiple terminal states
 How to find the optimal strategy?

e Search algorithms (depth-first, A%, ...) not
applicable

5141

Agent-Environment Interaction [Sutton & Barto 2018]

14/ 107

RL Formalisation

Markov Decision Process

 Markov Decision Process (MDP) is a tuple
(S, A, R);

e § — finite set of states

« A — set of actions

« R — set of rewards
» p(s’|s,a) — MDP transition model
*ry =k [Rt+1 |5, =5, A, = a]

\)

= Z p(s'|s,a)r;, one step expected reward
"

15/ 107

RL Formalisation

Markov Decision Process

 Markov Decision Process (MDP) is a tuple
(S, A, R);

e § — finite set of states

« A — set of actions

« R — set of rewards
» p(s’|s,a) — MDP transition model
¢ 0~ [[Rr+1 1S, =5,A, = a]

\)

= Z p(s’| s, a)r one step expected reward

s’
(S, = (0,2), Ay = RIGHT, R, = — 1),(S; = (1,2),...), ...

(S, = (0,2),A; = RIGHT, R, = — 1), (s1 0,1),...),...
Sy = (0,2), Ay, = RIGHT, R, = — 40), &
(%IgHT 05-(-1)+0.25- (- 1)+025 (—40) = — 10.75

16/ 107

RL Formalisation

Agents and Environments

* Agent-environment interaction forms a
trajectory:

7= (S0 Ag R, (S AL R, -, (Su AR, - .

%

N

R

E <

D —
St41

Agent-Environment Interaction [Sutton & Barto 2018]

17/ 107

RL Formalisation

Markov Decision Process

 Markov property:
PLS 1 15] = PLS;1 156815 - -+ 550]

* The future Is independent of the past given
the present

e The state Is sufficient statistic of the future

RL Formalisation

Reward and Return

« Agent’s goal is to maximise the return G:

- 2
G =rp 1+ Yt

:rt 1+}/(I”t 2+}/7°t 3"‘)

=141+ 76

« v € [0,]1]— future reward discount factor

* Varying y varies the “far-sightedness”

 Mathematically convenient in continuing
problems and cyclic Markov processes:

_ N\ _ 7
G, = Z}/rt+k+1 -1
k=0 /

18/ 107

RL Formalisation

Reward and Return

» Credit assignment problem:

 How do you distribute credit for success (or
blame for failure) of a decision (action) among
the many throughout the episode?

y

19/ 107

—

ML)

3

20/ 107

RL Formalisation
Policy

* Policy fully captures agent’s reasoning process
(agent = policy)

* |s the conditional probability distribution over
actions a € A given states s € -

« Deterministic policy: a = 7(s) 1
* e.g. greedy policy

» Stochastic policy: m(a|s) = P[A, = a| S, = 5] 2
* e.g. exploratory policy

* [earning in RL refers to learning the policy that
maximises the return

RL Formalisation

21/ 107

BirsmL

State-Value Function

» The state-value function v_(s) of an MDP is the

expected return starting from state s, and then

following policy

V(s) =

_][[Gt‘St = 5] a

= AR S {CAE N A A
D T
— Zﬂ(a\s) rSa+}/Zp(S'\S,d)Vﬂ(S/)] /

OO OO0 O O0S

Between MDPs and SMDPs [Sutton et al. 1999] Backup diagram for v_ [Sutton & Barto 2018]

 Bellman equation for state-value

22/ 107

SImLX

RL Formalisation

Action-Value Function

» The action-value function g_(s, a) of an MDP is

the expected return starting from state s by
taking an action a, and then following policy x:

qu(Sa CZ) = _]Z'[GZ"SZ' — SaAt — Cl] A
= B4 + 7G| S, = 5,A, = dl 3,

=1l 4y) p(s'|s, a)vy(s)
.

=ri+y) p(s'|s.a)) n(d'|s)q (s a) o o ¢ od

Between MDPs and SMDPs [Sutton et al. 1999] Backup diagram for g, [Sutton & Barto 2018]

 Bellman equation for action-value

23/ 107

SImLX

RL Formalisation

Action-Value Function

» The action-value function g_(s, a) of an MDP is

the expected return starting from state s by
taking an action a, and then following policy x:

qu(Sa CZ) = _]Z'[GZ"SZ' — SaAt — Cl] A
= B4 + 7G| S, = 5,A, = dl S,

=1l 4y) pls'|s, a)vy(s)
.

=r¢+y) p(s'|s,a)) n(d'|s)q,(s a) o o ¢ od

Between MDPs and SMDPs [Sutton et al. 1999] Backup diagram for g, [Sutton & Barto 2018]

Relationship between v_and g,

24/ 107

=
RL Formalisation Lﬂ S 4
Optimal Policy
* Value functions define a partial ordering over policies:
7' > m if and olnly if v (s) =2 v (s)Vs €S
« A policy 7' is defined to be better than or equal to a policy 7 if its expected
return is greater than or equal to that of & for all states

* [here is always at least one policy that is better than or equal to all other
policies, called the optimal policy, and denoted 7*

» Policy Improvement Theorem: If we have two policies 7 and 7’ so that
n(s) = 7'(s) for all s € S except some s’ where 7'(s") = a # n(s’) and
q.(s,a) > v_(s)then z’' > r.

Proof: [Sutton & Barto 2018] p. 78

O ML

» All optimal policies share the same state-value function v*(s) and action-
value function g*(s, a)

* Correspond to optimal policies, and optimal policies are greedy

vE(s) = max v (s)

RL Formalisation

Optimal Value Functions

S

— A% Ty [rf+1 7615 = 5.4, = a] (U*) A (q*)
aeA max A
a 8,
_ a / S
= max |7, +yZp<s |5, @)V¥(s') /\ /\ /\T max/8\ /8\
/

q*(s,a)ﬁmaxqﬂ(s,a) O O O O O OS ® © e od

T

Optimal value backup diagrams [Sutton & Barto 2018]

ity 3 (5.0 max g5,)
S,

a'eA

Between MDPs and SMDPs [Sutton et al. 1999]

26/ 107

RL Formalisation 8ramL)

Bellman Equations and Planning -

» Equations for v_and ¢, are called Bellman equations

o Set of recursive equations relating states (and actions) to successor states
(and actions)

* |n principle, could be solved iteratively, or with a dynamic programming
methods:

* value iteration, g-value iteration, policy iteration
» Equations for v* and g™ are called Bellman optimality equations

RL Formalisation

Generalised Policy Iteration (GPI)

* As a direct consequence of the policy
iImprovement theorem:

Eval Impr Eval Impr Eval

&
My —> Vy —> M| —> Vy, —> ... T —V,

 Policy evaluation: Estimate the true
value V = v_iteratively

 Policy improvement: Use estimated
V ~ v_to select a better policy 7’ > 7,

' = greedy(V)

x

v, T

GPI convergence [Sutton & Barto 2018]

27/ 107

SImLX

,U*j Tr*

28/ 107

PSImLX

evaluation

RL Formalisation

Generalised Policy lteration (GPI)

Policy Iteration (using iterative policy evaluation) for estimating 7= =~ m, Vo~ (P

. Initialization
V(s) € R and 7(s) € A(s) arbitrarily for all s € 8

. Policy Evaluation
Loop:
A+ 0
Loop for each s € 8:
v+ V(s)

Vis) = 3, p(s'| 5. () [+ V() improvement

7 ~ greedy (V)

A < max(A, v —V(s)|)
until A < 0 (a small positive number determining the accuracy of estimation) ¢

. Policy Improvement
policy-stable < true
For each s € &:
old-action < m(s)
7(s) « arg max ZS/ p(s’| s, a) [rgg + ;/V(s’)]

If old-action # m(s), then policy-stable < false >
If policy-stable, then stop and return V = v, and m = 7,; else go to 2 T‘-* < ’U*

Policy Iteration algorithm [Sutton & Barto 2018] GPI steps [Sutton & Barto 2018]

29/ 107

RL Formalisation Lﬂ EITLY
Exploration-Exploitation Trade-Off

 Exploration: Find more about the environment
* Exploitation: Utilise gained knowledge to garner higher returns

 The case of the agent tasked with garnering the highest return in a continuing
environment throughout its entire lifetime:

* |f it commits to early-found schema for obtaining rewards, it may not find
out possibly better schemas

* |f it overly explores, its return will suffer

30/ 107

Outline S PSIML

* [ntroduction
* Reinforcement Learning Formalisation
 Model-Free Reinforcement Learning
 Motivation
 Monte Carlo and Temporal Difference Methods
« MC and TD: Bias vs Variance Trade-Off
e MC and TD: Future vs Previous Data
« MC and TD: Summary
 On-Policy vs Off-policy Learning
 Example 1: First-visit MC
 Example 2: Q-Learning
 Conclusions
 Beyond Tabular Methods

Un

31/ 107

SImLX

Model free RL

Motivation

» MDP transition model p(s’| s, a) is usually
unknown, or using it is impractical

» Without it equations for v_, g_, v*, ¢* incomputable
 [wo options:

 Learn the model p(s’| s, a), or use it to some
degree if known — model based RL (MBRL)

. Estimate v_, g_, v, g* directly without learning
the model — model free RL (MFRL)

32/ 107

Model free RL

Motivation

» MDP transition model p(s’| s, a) is usually
unknown, or using it is impractical

» Without it equations for v_, g_, v*, ¢* incomputable
 [wo options:

 Learn the model p(s’| s, a), or use it to some
degree if known — model based RL (MBRL)

. Estimate v_, g, v*, g™ directly without learning
the model — model free RL (MFRL)

OpenAl Five, Barner et al. 2019

33/ 107

Model free RL

Motivation

» MDP transition model p(s’| s, a) is usually
unknown, or using it is impractical

» Without it equations for v_, g_, v*, ¢* incomputable
 [wo options:

 Learn the model p(s’| s, a), or use it to some
degree if known — model based RL (MBRL)

 Estimate v_, g, v*, g™ directly without learning
the model — model free RL (MFRL)

» V.(s), O(s,a) are (imperfect) estimates to v_,
q, at computation time step ¢

OpenAl Five, Barner et al. 2019

Model free RL

Motivation

V]Z'(S) = _E[Gt‘St — S]
= E lr 1 + 7G| S = 5]
en MDPs and SMDPs [Sutton et al. 1999]

35/ 107

SImLX

Model free RL

Motivation
v(s) = E[G,]S, = 5] St
= _ﬂ[rt+1 + 7Gt+1 | 5 = 5] g
ay
— Z m(a|s) | r® + yz p(s’| s, a)vﬂ(S’)] 4

O 5+
Between MDPs and SMDPs [Sutton et al. 1999]

36/ 107

SImLX

Model free RL

Motivation

V]Z'(S) = _E[Gt‘St — S] St
=k, lr +vGyq 1S, = 5]

=Y atals) |+ yzp/csq«,/aivﬂ(w]

Between MDPs and SMDPs [Sutton et al. 1999]

37/ 107

Model free RL LD =MLY
Monte Carlo (MC) and Temporal Difference (TD)

Monte Carlo (MC) methods
 Core idea:

 Play entire episodes using a fixed policy 7 and estimate state values v_ as
empirical means of returns

 Can only be applied to episodic tasks
Temporal Difference (TD) methods
 Core idea:
o Utilise the recursive nature of the Bellman equation to update state values
v based on states agent transitions to

e |earn from incomplete episodes, can be applied to continuing tasks

» They bootstrap — instead of measuring the true return G, they use V(S$,) as
its estimate, which in turn is also an estimate of the true v_($,)

Model free RL

38/ 107

BirsmL

Monte Carlo (MC) and Temporal Difference (TD)

Criteria

Monte Carlo Methods

Temporal Difference Methods

Bias vs Variance

Online

Bootstrapping because v: is based off of Vi1
Estimation

On-Policy

Off-Policy

Past vs Future Future data

39/ 107

Model free RL L“ SIMLX

Monte Carlo (MC) and Temporal Difference (TD) o

1 n
VS)ur1 =— 2, G, G, =R+7G,,,
=1
i (n=1) X R+yV
=—(G,+) G
& (’ i=1 Sl>
1 R
=—1 G —-1)- G
n w1 n—1 ; g
|
~ (G, —(n=1)-V(s),)
|
= V(s), + — <GS _ V(S)n>
o\
Monte Carlo (MC) Update Temporal Difference (TD) Update

V(s) « V(s) + . G, — V(s)| V(s) < V(s) + a |R + yV(s) — V(s)|
N

40/ 107

BirsmL

Model free RL

Monte Carlo (MC) and Temporal Difference (TD)

V($)yp1=—) G, G, =R+yG,,
i=1 ~R+yV.

1 (G, + (1= DVGs),)

n

= Vi), +~ (G, ~ V(s

n

Monte Carlo (MC) Update step size Temporal Difference (TD) Update

1 |
V(s) < V(s) + G, — V(s)] V(s) « V(s) +|E|_R + yV(s")|— V(s)|

41/ 107

ML)

Un

Model free RL LD
Monte Carlo (MC) and Temporal Difference (TD)
S; s,

X\A ™\

OO0 OO * \OO OOA
o 1\2\ o j\\f\

O OO0 OO0 0 O00O0 O OO0 O

Monte Carlo (MC) Update Temporal Difference (TD) Update

V(s) « V(s) + . G, — V(s)| V(s) < V(s) + a |R + yV(s) — V(s)|
N

42/ 107

Model free RL SirsmLX

Monte Carlo (MC) and Temporal Difference (TD)
S; s,

X\A ™\

\OO OO * \OO OOA
o 1\2\ o j\\f\

Monte Carlo (MC) Update Temporal Difference (TD) Update
*|s an estimate because expectation over *Is an estimate both because the
return is not known and is estimated by expectation is unknown, and true v_(S,,) is

sample mean approximated by current estimate V(S,, ;)

Model free RL

Monte Carlo (MC) and Temporal Difference (TD)

width

— >
Temporal- ? o update /O\ Dynamic
difference ¢ A A programming

learning O O OO O

depth
(length)
of update
\/
/O\ Exhaustive
Monte .. search
Carlo ? . .f)\‘ 0
° r
O OO O

Comparison of RL methods [Sutton & Barto 2018]

43/ 107

—

ol

ML)

44/ 107

Model free RL L“ SIMLX
MC and TD: Bias vs Variance Trade-Off

» MC Target [return (5] is an unbiased estimate of v_(S,)

» TD Target [R, | + yV(S,.)] is biased estimate of v_(S,)

* On the other hand, TD target has much lower variance compared to MC
target:

 Return depends on many steps during the episode, each potentially
affected by the environment stochasticity

 [D target depends only on a single step

« MC methods do not bootstrap, while TD methods bootstrap because
estimating V(S,) uses another estimate V(S . |)

45/ 107

Model free RL

MC and TD: Future vs Previous Data
Example

e A0, B,0

e B 1

ol

r=10
O 100%

W w W ww
O — - A A

Model free RL

46/ 107

ol

MC and TD: Bias vs Variance Trade-Off

Example

« A,0,B,0

e B, 1

Solution

V(B): In 6/8 examples G, for B

was 1, in 2/8 examples it was
0. Both TD and MC would

3 _
agree V(B) = —. <:> r=20 |
4 100%

V(A): Two lines of reasoning: r=20

- TD: Every time A was seen, we have immediately

3
transitioned into B, so V(A) = V(B) = 7

- MC: A was seen only once, and the return was 0,
therefore V(A) = 0\ (V) /

Model free RL f;

MC and TD: Summary

» MC methods minimise the error on the training set

D methods try to estimate the underlying MDP and give its maximum

liIkelihood estimate

47/ 107

ML)

« MC methods need to wait for episodes to finish in order to update value

functions
 TD methods can update value functions at each time-step
« MC methods have low (no) bias but high variance
 TD methods have hight bias and low variance

» MC methods are estimates because the expectation E_[G, | S, = s] is unknown

« TD methods are estimates both because the expectation E_[R,
is unknown, and because V(S,, ;) is used instead of v_(5,,)

1 + G,

1S, = s]

48/ 107

=
Model free RL L“ SIMLX
On-Policy vs Off-Policy Learning
* All learning methods face a dilemma:
* They seek to learn action values conditional on subsequent optimal behaviour

 But they need to behave non-optimally in order to explore all actions
* On-policy learning:

e | earn about policy & from experience sampled by 7
o 1 is neither fully greedy, nor fully exploratory — we need to keep sufficient
exploration in order to converge to good behaviour
 Conceptually very simple
o Off-policy learning:
 Learn about target policy 7 from experience sampled by behaviour policy b
* Allows for learning from past policy experiences or people

» Alleviates exploration-exploitation tradeoff, but is more conceptually
challenging

49/ 107

Model free RL

Example 1: On-Policy MC Algorithm

On-policy first-visit MC control (for s-soft policies), estimates 7 ~ 7,

Algorithm parameter: small € > 0

Initialize:
T <— an arbitrary e-soft policy
Q(s,a) € R (arbitrarily), for all s € §, a € A(s)
Returns(s,a) < empty list, for all s € §, a € A(s)

Repeat forever (for each episode):
Generate an episode following 7m: Sg, Ag, R1,...,57_1,Ar_1, R
G <0
Loop for each step of episode, t =T—-1,T—-2,...,0:
G < vG + Ry
Unless the pair S;, A; appears in So, Ao, S1,A1...,5i-1, Ai_1:
Append G to Returns(S;, Az)
Q(Sy, A;) < average(Returns(S;, Ay))
A* < argmax, Q(St, a) (with ties broken arbitrarily)
For all a € A(S):

1 —e+¢/|A(S;)| if a= A*
() < L it # A

50/ 107

Model free RL

Example 1: On-Policy MC Algorithm

On-policy first-visit MC control (for s-soft policies), estimates 7 ~ 7,

Algorithm parameter: small € > 0

Initialize:
T <— an arbitrary e-soft policy
Q(s,a) € R (arbitrarily), for all s € §, a € A(s)
Returns(s,a) < empty list, for all s € §, a € A(s)

Repeat forever (for each episode):
Generate an episode following 7m: Sg, Ag, R1,...,57_1,Ar_1, R
G <0
Loop for each step of episode, t =T—-1,T—-2,...,0:
G < vG + Ry
Unless the pair S;, A; appears in So, Ao, S1,A1...,5i-1, Ai_1:
Append G to Returns(S;, Az)
Q(Sy, A;) < average(Returns(S;, Ay))
A* < argmax, Q(St, a) (with ties broken arbitrarily)
For all a € A(S):

1 —e+¢/|A(S;)| if a= A*
() < L it # A

51/ 107

Model free RL

Example 1: On-Policy MC Algorithm

On-policy first-visit MC control (for s-soft policies), estimates 7 ~ 7,

Algorithm parameter: small € > 0

Initialize:
T <— an arbitrary e-soft policy
Q(s,a) € R (arbitrarily), for all s € S, a € A(s)
Returns(s,a) < empty list, for all s € §, a € A(s)

Repeat forever (for each episode):
Generate an episode following 7m: Sg, Ag, R1,...,57_1,Ar_1, R
G <0
Loop for each step of episode, t =T—-1,T—-2,...,0:
G < vG + Ry
Unless the pair S;, A; appears in So, Ao, S1,A1...,5i-1, Ai_1:
Append G to Returns(S;, Az)
Q(Sy, A;) < average(Returns(S;, Ay))
A* < argmax, Q(St, a) (with ties broken arbitrarily)
For all a € A(S):

1 —e+¢/|A(S;)| if a= A*
() < L it # A

Model free RL

Example 1: On-Policy MC Algorithm

On-policy first-visit MC control (for s-soft policies), estimates 7 ~ 7,

Algorithm parameter: small € > 0

Initialize:
T <— an arbitrary e-soft policy
Q(s,a) € R (arbitrarily), for all s € §, a € A(s)
Returns(s,a) < empty list, for all s € 8, a € A(s)

Repeat forever (for each episode):
Generate an episode following 7m: Sg, Ag, R1,...,57_1,Ar_1, R
G+ 0
Loop for each step of episode, t =T—-1,T-2,...,0:
G < vG + Riyq
Unless the pair S;, A; appears in So, Ao, S1,A1...,5i-1, Ai_1:
Append G to Returns(S;, A¢)
Q(Sy, A;) < average(Returns(S;, Ay))
A* < argmax, Q(St, a) (with ties broken arbitrarily)
For all a € A(S):
1 —e+¢/|A(S;)| if a= A*
malSe) { e/|A<St)|/ if a # A*

52/ 107

SImLX

Returns(s, a)

53/ 107

Model free RL

Example 1: On-Policy MC Algorithm

On-policy first-visit MC control (for s-soft policies), estimates 7 ~ 7,

Algorithm parameter: small € > 0

Initialize:
T <— an arbitrary e-soft policy
Q(s,a) € R (arbitrarily), for all s € §, a € A(s)
Returns(s,a) < empty list, for all s € §, a € A(s)

Repeat forever (for each episode):
Generate an episode following m: Sy, Ag, R1,...,S7—_1,Ar_1, R
G <0
Loop for each step of episode, t =T—-1,T—-2,...,0:
G < vG + Ry
Unless the pair S;, A; appears in So, Ao, S1,A1...,5i-1, Ai_1:
Append G to Returns(S;, Az)
Q(Sy, A;) < average(Returns(S;, Ay))
A* < argmax, Q(St, a) (with ties broken arbitrarily)
For all a € A(S):

1 —e+¢/|A(S;)| if a= A*
() < L it # A

54/ 107

Model free RL

Example 1: On-Policy MC Algorithm

On-policy first-visit MC control (for s-soft policies), estimates 7 ~ 7,

Algorithm parameter: small € > 0

Initialize:
T <— an arbitrary e-soft policy
Q(s,a) € R (arbitrarily), for all s € §, a € A(s)
Returns(s,a) < empty list, for all s € §, a € A(s)

Repeat forever (for each episode):
Generate an episode following m: Sy, Ag, R1,...,S7—_1,Ar_1, R
G <0
Loop for each step of episode, t =T—-1,T—-2,...,0:
G < vG + Ry
Unless the pair S;, A; appears in So, Ao, S1,A1...,5i-1, Ai_1:
Append G to Returns(S;, Az)
Q(Sy, A;) < average(Returns(S;, Ay))
A* < argmax, Q(St, a) (with ties broken arbitrarily)
For all a € A(S):
1 —e+¢/|A(S;)| if a= A*
malfe) < { e/|A<St>|/ if a # A*

z.=1[(0,2), UP, — 1]

Model free RL

Example 1: On-Policy MC Algorithm

On-policy first-visit MC control (for s-soft policies), estimates 7 ~ 7,

Algorithm parameter: small € > 0

Initialize:
T <— an arbitrary e-soft policy
Q(s,a) € R (arbitrarily), for all s € §, a € A(s)
Returns(s,a) < empty list, for all s € §, a € A(s)

Repeat forever (for each episode):
Generate an episode following m: Sy, Ag, R1,...,S7—_1,Ar_1, R
G <0
Loop for each step of episode, t =T—-1,T—-2,...,0:
G < vG + Ry
Unless the pair S;, A; appears in So, Ao, S1,A1...,5i-1, Ai_1:
Append G to Returns(S;, Az)
Q(Sy, A;) < average(Returns(S;, Ay))
A* < argmax, Q(St, a) (with ties broken arbitrarily)
For all a € A(S):
1 —e+¢/|A(S;)| if a= A*
malfe) < { e/|A<St>|/ if a # A*

. = [(0,2), UP, — 1], [(0,1), UP, — 1]

55/ 107

Model free RL

Example 1: On-Policy MC Algorithm

On-policy first-visit MC control (for s-soft policies), estimates 7 ~ 7,

Algorithm parameter: small € > 0

Initialize:
T <— an arbitrary e-soft policy
Q(s,a) € R (arbitrarily), for all s € §, a € A(s)
Returns(s,a) < empty list, for all s € §, a € A(s)

Repeat forever (for each episode):
Generate an episode following m: Sy, Ag, R1,...,S7—_1,Ar_1, R
G <0
Loop for each step of episode, t =T—-1,T—-2,...,0:
G < vG + Ry
Unless the pair S;, A; appears in So, Ao, S1,A1...,5i-1, Ai_1:
Append G to Returns(S;, Az)
Q(Sy, A;) < average(Returns(S;, Ay))
A* < argmax, Q(St, a) (with ties broken arbitrarily)
For all a € A(S):
1 —e+¢/|A(S;)| if a= A*
malfe) < { e/|A<St>|/ if a # A*

. = [(0,2), UP, — 1], [(0,1), UP, — 1], [(0,0), UP, — 1]

56/ 107

57/ 107

Model free RL

Example 1: On-Policy MC Algorithm

On-policy first-visit MC control (for s-soft policies), estimates 7 ~ 7,

Algorithm parameter: small € > 0

Initialize:
T <— an arbitrary e-soft policy
Q(s,a) € R (arbitrarily), for all s € §, a € A(s)
Returns(s,a) < empty list, for all s € §, a € A(s)

Repeat forever (for each episode):
Generate an episode following m: Sy, Ag, R1,...,S7—_1,Ar_1, R
G+ 0
Loop for each step of episode, t =T—-1,T-2,...,0:
G < vG + Riyq
Unless the pair S;, A; appears in Sg, Ao, S1,A1...,5_-1,A+_1:
Append G to Returns(S;, A¢)
Q(Sy, A;) < average(Returns(S;, Ay))
A* < argmax, Q(St, a) (with ties broken arbitrarily)
For all a € A(S):

(a 1 —e+¢/|A(S;)| ifa= A"
(alSt) %{ e/|A(S:)] if a # A*

D
. = [(0,2), UP, — 1], [(0,1), UP, — 1],[(0,0), UP, — 1], [(0,0), UP, — 1} 4 *0.5 0.5‘

0.5

58/ 107

Model free RL

Example 1: On-Policy MC Algorithm

On-policy first-visit MC control (for s-soft policies), estimates 7 ~ 7,

Algorithm parameter: small € > 0

Initialize:
T <— an arbitrary e-soft policy
Q(s,a) € R (arbitrarily), for all s € §, a € A(s)
Returns(s,a) < empty list, for all s € §, a € A(s)

Repeat forever (for each episode):
Generate an episode following m: Sy, Ag, R1,...,S7—_1,Ar_1, R
G+ 0
Loop for each step of episode, t =T—-1,T-2,...,0:
G < vG + Riyq
Unless the pair S;, A; appears in Sg, Ao, S1,A1...,5_-1,A+_1:
Append G to Returns(S;, A¢)
Q(Sy, A;) < average(Returns(S;, Ay))
A* < argmax, Q(St, a) (with ties broken arbitrarily)
For all a € A(S):

(a 1 —e+¢/|A(S;)| ifa= A"
(alSt) %{ e/|A(S:)] if a # A*

D
. = [(0,2), UP, — 1], [(0,1), UP, — 1],[(0,0), UP, — 1], [(0,0), UP, — 1} #
1(0,0), UP, — 1}

59/ 107

Model free RL

Example 1: On-Policy MC Algorithm

On-policy first-visit MC control (for s-soft policies), estimates 7 ~ 7,

Algorithm parameter: small € > 0

Initialize:
T <— an arbitrary e-soft policy
Q(s,a) € R (arbitrarily), for all s € §, a € A(s)
Returns(s,a) < empty list, for all s € §, a € A(s)

Repeat forever (for each episode):
Generate an episode following m: Sy, Ag, R1,...,S7—_1,Ar_1, R
G+ 0
Loop for each step of episode, t =T—-1,T-2,...,0:
G < vG + Riyq
Unless the pair S;, A; appears in Sg, Ao, S1,A1...,5_-1,A+_1:
Append G to Returns(S;, A¢)
Q(Sy, A;) < average(Returns(S;, Ay))
A* < argmax, Q(St, a) (with ties broken arbitrarily)
For all a € A(S):

(a 1 —e+¢/|A(S;)| ifa= A"
(alSt) %{ e/|A(S:)] if a # A*

D
. = [(0,2), UP, — 1], [(0,1), UP, — 1],[(0,0), UP, — 1], [(0,0), UP, — 1} #
1(0,0), UP, — 1], [(1,0), UP, — 1]

60/ 107

Model free RL

Example 1: On-Policy MC Algorithm

On-policy first-visit MC control (for s-soft policies), estimates 7 ~ 7,

Algorithm parameter: small € > 0

Initialize:
T <— an arbitrary e-soft policy
Q(s,a) € R (arbitrarily), for all s € §, a € A(s)
Returns(s,a) < empty list, for all s € §, a € A(s)

Repeat forever (for each episode):
Generate an episode following m: Sy, Ag, R1,...,S7—_1,Ar_1, R
G+ 0
Loop for each step of episode, t =T—-1,T-2,...,0:
G < vG + Riyq
Unless the pair S;, A; appears in Sg, Ao, S1,A1...,5_-1,A+_1:
Append G to Returns(S;, A¢)
Q(Sy, A;) < average(Returns(S;, Ay))
A* <+ argmax, Q(St, a) (with ties broken arbitrarily)
For all a € A(S):

(a 1 —e+¢/|A(S;)| ifa= A"
(alSt) %{ e/|A(S:)] if a # A*

D
. = [(0,2), UP, — 1], [(0,1), UP, — 1],[(0,0), UP, — 1], [(0,0), UP, — 1} 4
1(0,0), UP, — 1], [(1,0), UP, — 1],[(2,0), RIGHT, — 1]

61/ 107

Model free RL

Example 1: On-Policy MC Algorithm

On-policy first-visit MC control (for s-soft policies), estimates 7 ~ 7,

Algorithm parameter: small € > 0

Initialize:
T <— an arbitrary e-soft policy
Q(s,a) € R (arbitrarily), for all s € §, a € A(s)
Returns(s,a) < empty list, for all s € §, a € A(s)

Repeat forever (for each episode):
Generate an episode following m: Sy, Ag, R1,...,S7—_1,Ar_1, R
G+ 0
Loop for each step of episode, t =T—-1,T-2,...,0:
G < vG + Riyq
Unless the pair S;, A; appears in Sg, Ao, S1,A1...,5_-1,A+_1:
Append G to Returns(S;, A¢)
Q(Sy, A;) < average(Returns(S;, Ay))
A* <+ argmax, Q(St, a) (with ties broken arbitrarily)
For all a € A(S):
1—ec+¢e/|A(S)| ifa= A"
malfe) < { e/ A(Sy) if a # A*

D
. = [(0,2), UP, — 1], [(0,1), UP, — 1],[(0,0), UP, — 1], [(0,0), UP, — 1} 4
1(0,0), UP, — 1], [(1,0), UP, — 1],[(2,0), RIGHT, — 1], [(3,0), DOWN,100]}

62/ 107

Model free RL

Example 1: On-Policy MC Algorithm

On-policy first-visit MC control (for s-soft policies), estimates 7 ~ 7,

Algorithm parameter: small € > 0

Initialize:
T <— an arbitrary e-soft policy
Q(s,a) € R (arbitrarily), for all s € §, a € A(s)
Returns(s,a) < empty list, for all s € §, a € A(s)

Repeat forever (for each episode):
Generate an episode following 7m: Sy, Ag, R1, ..., St_1,Ar_1, R
G+ 0
Loop for each step of episode, t =T—-1,T-2,...,0:
G < vG + Riyq
Unless the pair S;, A; appears in So, Ao, S1,A1...,5i-1, Ai_1:
Append G to Returns(S;, A¢)
Q(Sy, A;) < average(Returns(S;, Ay))
A* <+ argmax, Q(St, a) (with ties broken arbitrarily)
For all a € A(S):

(a 1 —e+¢/|A(S;)| ifa= A"
(alSt) %{ e/|A(S:)] if a # A*

D
. = [(0,2), UP, — 1], [(0,1), UP, — 1],[(0,0), UP, — 1], [(0,0), UP, — 1} 4
1(0,0), UP, — 1], [(1,0), UP, — 1],[(2,0), RIGHT, — 1], [(3,0), DOWN,100]}
G=0

63/ 107

Model free RL

Example 1: On-Policy MC Algorithm

On-policy first-visit MC control (for s-soft policies), estimates 7 ~ 7,

Algorithm parameter: small € > 0

Initialize:
T <— an arbitrary e-soft policy
Q(s,a) € R (arbitrarily), for all s € §, a € A(s)
Returns(s,a) < empty list, for all s € §, a € A(s)

Repeat forever (for each episode):
Generate an episode following 7m: Sy, Ag, R1, ..., St_1,Ar_1, R
G+ 0
Loop for each step of episode, t =T—-1,T-2,...,0:
G < 7G+ Ry
Unless the pair S;, A; appears in So, Ao, S1,A1...,5i-1, Ai_1:
Append G to Returns(S;, A¢)
Q(Sy, A;) < average(Returns(S;, Ay))
A* <+ argmax, Q(St, a) (with ties broken arbitrarily)
For all a € A(S):

(a 1 —e+¢/|A(S;)| ifa= A"
(alSt) %{ e/|A(S:)] if a # A*

D
. = [(0,2), UP, — 1], [(0,1), UP, — 1],[(0,0), UP, — 1], [(0,0), UP, — 1} 4
1(0,0), UP, — 1], [(1,0), UP, — 1],[(2,0), RIGHT, — 1], [(3,0), DOWN, 100}
G = 100

Model free RL

Example 1: On-Policy MC Algorithm

On-policy first-visit MC control (for s-soft policies), estimates 7 ~ 7,

Algorithm parameter: small € > 0

64/ 107

—

ML)

Initialize:
T <— an arbitrary e-soft policy
Q(s,a) € R (arbitrarily), for all s € §, a € A(s)
Returns(s,a) < empty list, for all s € §, a € A(s)

Repeat forever (for each episode):
Generate an episode following 7m: Sg, Ag, R1,...,57_1,Ar_1, R
G+ 0
Loop for each step of episode, t =T—-1,T-2,...,0:

G < vG + Riyq

Unless the pair S;, A; appears in So, Ao, S1,A1...,5i-1, Ai_1:
Append G to Returns(S;, A;)
Q(Sy, A;) < average(Returns(S;, Ay))

A* <+ argmax, Q(St, a) (with ties broken arbitrarily)

For all a € A(S):
1—e+¢€/|A(S;)| ifa= A*
TalS) « { =/|A(Sh)] if @ # A*

. = [(0,2),UP, — 1], [(0,1), UP, — 1], [(0,0), UP, — 1], [(0,0), UP, — 1] Returns(s, a)

1(0,0), UP, — 1], [(1,0), UP, — 1],[(2,0), RIGHT, — 1], [(3,0), DOWN,100]}
G = 100

nail

65/ 107

Model free RL

Example 1: On-Policy MC Algorithm

On-policy first-visit MC control (for s-soft policies), estimates 7 ~ 7,

Algorithm parameter: small € > 0

Initialize:
T <— an arbitrary e-soft policy
Q(s,a) € R (arbitrarily), for all s € §, a € A(s)
Returns(s,a) < empty list, for all s € §, a € A(s)

Repeat forever (for each episode):
Generate an episode following 7m: Sy, Ag, R1, ..., St_1,Ar_1, R
G+ 0
Loop for each step of episode, t =T—-1,T-2,...,0:
G < vG + Riyq
Unless the pair S;, A; appears in So, Ao, S1,A1...,5i-1, Ai_1:
Append G to Returns(S;, A¢)
Q(S;, Ay) < average(Returns(S;, Ay))
A* <+ argmax, Q(St, a) (with ties broken arbitrarily)
For all a € A(S):

(a 1 —e+¢/|A(S;)| ifa= A"
(alSt) %{ e/|A(S:)] if a # A*

D
. = [(0,2), UP, — 1], [(0,1), UP, — 1],[(0,0), UP, — 1], [(0,0), UP, — 1} 4
1(0,0), UP, — 1], [(1,0), UP, — 1],[(2,0), RIGHT, — 1], [(3,0), DOWN, 100}
G = 100

66/ 107

Model free RL

Example 1: On-Policy MC Algorithm

On-policy first-visit MC control (for s-soft policies), estimates 7 ~ 7,

Algorithm parameter: small € > 0

Initialize:
T <— an arbitrary e-soft policy
Q(s,a) € R (arbitrarily), for all s € §, a € A(s)
Returns(s,a) < empty list, for all s € §, a € A(s)

Repeat forever (for each episode):
Generate an episode following 7m: Sy, Ag, R1, ..., St_1,Ar_1, R
G+ 0
Loop for each step of episode, t =T—-1,T-2,...,0:
G < vG + Riyq
Unless the pair S;, A; appears in So, Ao, S1,A1...,5i-1, Ai_1:
Append G to Returns(S;, A¢)
Q(Sy, A;) < average(Returns(S;, Ay))
A* + argmax, Q(St, a) (with ties broken arbitrarily)
For all a € A(S):

(a 1 —e+¢/|A(S;)| ifa= A"
(alSt) %{ e/|A(S:)] if a # A*

D
. = [(0,2), UP, — 1], [(0,1), UP, — 1],[(0,0), UP, — 1], [(0,0), UP, — 1} 4
1(0,0), UP, — 1], [(1,0), UP, — 1], [(2,0), RIGHT, — 1], [(3,0), DOWN,100]
G =100 A* = DOWN

67/ 107

Model free RL

Example 1: On-Policy MC Algorithm

On-policy first-visit MC control (for s-soft policies), estimates 7 ~ 7,

Algorithm parameter: small € > 0

Initialize:
T <— an arbitrary e-soft policy
Q(s,a) € R (arbitrarily), for all s € §, a € A(s)
Returns(s,a) < empty list, for all s € §, a € A(s)

Repeat forever (for each episode):
Generate an episode following 7m: Sg, Ag, R1,...,57_1,Ar_1, R
G+ 0
Loop for each step of episode, t =T—-1,T-2,...,0:
G < vG + Riyq
Unless the pair S;, A; appears in So, Ao, S1,A1...,5i-1, Ai_1:
Append G to Returns(S;, A¢)
Q(Sy, A;) < average(Returns(S;, Ay))
A* <+ argmax, Q(St, a) (with ties broken arbitrarily)
For all a € A(S):
1 —e+¢/|A(S;)| if a= A*
malSe) { S RS

kS
. = [(0,2), UP, — 1], [(0,1), UP, — 1],[(0,0), UP, — 1], [(0,0), UP, — 1} 4
1(0,0), UP, — 1], [(1,0), UP, — 1],[(2,0), RIGHT, — 1], [(3,0), DOWN, 100}
G =100 A* = DOWN

68/ 107

Model free RL

Example 1: On-Policy MC Algorithm

On-policy first-visit MC control (for s-soft policies), estimates 7 ~ 7,

Algorithm parameter: small € > 0

Initialize:
T <— an arbitrary e-soft policy
Q(s,a) € R (arbitrarily), for all s € §, a € A(s)
Returns(s,a) < empty list, for all s € §, a € A(s)

Repeat forever (for each episode):
Generate an episode following 7m: Sg, Ag, R1,...,57_1,Ar_1, R
G+ 0
Loop for each step of episode, t =T—-1,T-2,...,0:
G < 7G+ Ry
Unless the pair S;, A; appears in So, Ao, S1,A1...,5i-1, Ai_1:
Append G to Returns(S;, A¢)
Q(Sy, A;) < average(Returns(S;, Ay))
A* <+ argmax, Q(St, a) (with ties broken arbitrarily)
For all a € A(S):
1—ec+¢e/|A(S)| ifa= A"
malSe) { e/ A(Sy) if a # A*

kS
. = [(0,2), UP, — 1], [(0,1), UP, — 1],[(0,0), UP, — 1], [(0,0), UP, — 1} 4
1(0,0), UP, — 1], [(1,0), UP, — 1], [(2,0), RIGHT, — 1], [(3,0), DOWN, 100}

69/ 107

Model free RL

Example 2: Off-Policy TD Algorithm

Q-learning (off-policy TD control) for estimating 7 ~ 7,

Algorithm parameters: step size o € (0, 1], small € > 0
Initialize Q(s,a), for all s € 87, a € A(s), arbitrarily except that Q(terminal,-) =0

Loop for each episode:
Initialize S
Loop for each step of episode:
Choose A from S using policy derived from @) (e.g., e-greedy)
Take action A, observe R, S’
Q(S, A) + Q(S,A) + a|R + ymax, Q(5’,a) — Q(S, A)|
S S

until S i1s terminal

70/ 107

Model free RL

Example 2: Off-Policy TD Algorithm

Q-learning (off-policy TD control) for estimating 7 ~ 7,

Algorithm parameters: step size o € (0, 1], small € > 0
Initialize Q(s,a), for all s € 87, a € A(s), arbitrarily except that Q(terminal,-) =0

Loop for each episode:
Initialize S
Loop for each step of episode:
Choose A from S using policy derived from @) (e.g., e-greedy)
Take action A, observe R, S’
Q(S, A) + Q(S,A) + a|R + ymax, Q(5’,a) — Q(S, A)|
S S

until S i1s terminal

a=0.1 y=09 &=0.4

71/ 107

Model free RL

Example 2: Off-Policy TD Algorithm

Q-learning (off-policy TD control) for estimating 7 ~ 7,

Algorithm parameters: step size o € (0, 1], small € > 0
Initialize Q(s, a), for all s € 8T, a € A(s), arbitrarily except that Q(terminal,-) =0

Loop for each episode:
Initialize S
Loop for each step of episode:
Choose A from S using policy derived from @) (e.g., e-greedy)
Take action A, observe R, S’
Q(S, A) + Q(S,A) + a|R + ymax, Q(5’,a) — Q(S, A)|
S S

until S i1s terminal

a=0.1 y=09 &=0.4

72/ 107

Model free RL

Example 2: Off-Policy TD Algorithm

Q-learning (off-policy TD control) for estimating 7 ~ 7,

Algorithm parameters: step size o € (0, 1], small € > 0
Initialize Q(s,a), for all s € 87, a € A(s), arbitrarily except that Q(terminal,-) =0

Loop for each episode:
Initialize S
Loop for each step of episode:
Choose A from S using policy derived from @) (e.g., e-greedy)
Take action A, observe R, S’
Q(S, A) + Q(S,A) + a|R + ymax, Q(5’,a) — Q(S, A)|
S S

until S i1s terminal

a=0.1 y=09 &=0.4
S =(0,2)

73/ 107

Model free RL

Example 2: Off-Policy TD Algorithm

Q-learning (off-policy TD control) for estimating 7 ~ 7,

Algorithm parameters: step size o € (0, 1], small € > 0
Initialize Q(s,a), for all s € 87, a € A(s), arbitrarily except that Q(terminal,-) =

Loop for each episode:
Initialize S
Loop for each step of episode:
Choose A from S using policy derived from @) (e.g., e-greedy)
Take action A, observe R, S’
Q(S, A) + Q(S,A) + a|R + ymax, Q(5’,a) — Q(S, A)|
S S

until S i1s terminal

a=01y=09 =04

74/ 107

Model free RL

Example 2: Off-Policy TD Algorithm

Q-learning (off-policy TD control) for estimating 7 ~ 7,

Algorithm parameters: step size o € (0, 1], small € > 0
Initialize Q(s,a), for all s € 87, a € A(s), arbitrarily except that Q(terminal,-) =

Loop for each episode:
Initialize S
Loop for each step of episode:
Choose A from S using policy derived from @) (e.g., e-greedy)
Take action A, observe R, S’
Q(S, A) + Q(S,A) + a|R + ymax, Q(5’,a) — Q(S, A)|
S S

until S i1s terminal

a=01 y=09 =04

S = (1,2)

75/ 107

Model free RL

Example 2: Off-Policy TD Algorithm

Q-learning (off-policy TD control) for estimating 7 ~ 7,

Algorithm parameters: step size a € (0, 1], small € > 0
Initialize Q(s,a), for all s € 87, a € A(s), arbitrarily except that Q(terminal,-) =0

Loop for each episode:
Initialize S
Loop for each step of episode:
Choose A from S using policy derived from @) (e.g., e-greedy)
Take action A, observe R, S’
Q(S,A) « Q(S,A) + a[R + ymax, Q(S’,a) — Q(S, A)]
S+ 5

until S i1s terminal

a=01 y=09 =04

S" = (1,2)
0 ((0,2),RIGHT) « —1+0.1-[-1+09-0—(=1)] = — 1.09

76/ 107

Model free RL

Example 2: Off-Policy TD Algorithm

Q-learning (off-policy TD control) for estimating 7 ~ 7,

Algorithm parameters: step size o € (0, 1], small € > 0
Initialize Q(s,a), for all s € 87, a € A(s), arbitrarily except that Q(terminal,-) =0

Loop for each episode:
Initialize S
Loop for each step of episode:
Choose A from S using policy derived from @) (e.g., e-greedy)
Take action A, observe R, S’
Q(S, A) + Q(S,A) + a|R + ymax, Q(S’,a) — Q(S, A)|
S« S5

until S i1s terminal

a=0.1 y=09 £=04
S =(1,2)

77/ 107

Model free RL

Example 2: Off-Policy TD Algorithm

Q-learning (off-policy TD control) for estimating 7 ~ 7,

Algorithm parameters: step size o € (0, 1], small € > 0
Initialize Q(s,a), for all s € 87, a € A(s), arbitrarily except that Q(terminal,-) =

Loop for each episode:
Initialize S
Loop for each step of episode:
Choose A from S using policy derived from @) (e.g., e-greedy)
Take action A, observe R, S’
Q(S, A) + Q(S,A) + a|R + ymax, Q(5’,a) — Q(S, A)|
S S

until S i1s terminal

a=01 y=09 =04
S — (1,2) C U[O,l] — 082 > £ = A = DOWN

78/ 107

Model free RL

Example 2: Off-Policy TD Algorithm

Q-learning (off-policy TD control) for estimating 7 ~ 7,

Algorithm parameters: step size o € (0, 1], small € > 0
Initialize Q(s,a), for all s € 87, a € A(s), arbitrarily except that Q(terminal,-) =

Loop for each episode:
Initialize S
Loop for each step of episode:
Choose A from S using policy derived from @) (e.g., e-greedy)
Take action A, observe R, S’
Q(S, A) + Q(S,A) + a|R + ymax, Q(5’,a) — Q(S, A)|
S S

until S i1s terminal

a=0.1 y=09 £=04
S=(1,2) c~Ug;=082<e=>A=DOWN R=—40

S = (1,3)

79/ 107

Model free RL

Example 2: Off-Policy TD Algorithm

Q-learning (off-policy TD control) for estimating 7 ~ 7,

Algorithm parameters: step size a € (0, 1], small € > 0
Initialize Q(s,a), for all s € 87, a € A(s), arbitrarily except that Q(terminal,-) =0

Loop for each episode:
Initialize S
Loop for each step of episode:
Choose A from S using policy derived from @) (e.g., e-greedy)
Take action A, observe R, S’
Q(S,A) «+ Q(S,A) + a[R + ymax, Q(S’,a) — Q(S, A)]
S+ 5

until S i1s terminal

a=0.1 y=09 £=04
S=(1,2) c~Ug;=082<e=>A=DOWN R=—40

S’ = (1,3)
0 ((1,2),DOWN) « —1+40.1 - [-40+0.9-0— (—1)] = — 4.9

80/ 107

Model free RL

Example 2: Off-Policy TD Algorithm

Q-learning (off-policy TD control) for estimating 7 ~ 7,

Algorithm parameters: step size o € (0, 1], small € > 0
Initialize Q(s,a), for all s € 87, a € A(s), arbitrarily except that Q(terminal,-) =0

Loop for each episode:
Initialize S
Loop for each step of episode:
Choose A from S using policy derived from @) (e.g., e-greedy)
Take action A, observe R, S’
Q(S, A) + Q(S, A) + a|R + ymax, Q(S’,a) — Q(S, A)|
S« S5

until S i1s terminal

a=0.1 y=09 &=0.4
S =(1,3)

81/ 107

Model free RL

Example 2: Off-Policy TD Algorithm

Q-learning (off-policy TD control) for estimating 7 ~ 7,

Algorithm parameters: step size o € (0, 1], small € > 0
Initialize Q(s,a), for all s € 87, a € A(s), arbitrarily except that Q(terminal,-) =0

Loop for each episode:
Initialize S
Loop for each step of episode:
Choose A from S using policy derived from @) (e.g., e-greedy)
Take action A, observe R, S’
Q(S, A) + Q(S,A) + a|R + ymax, Q(5’,a) — Q(S, A)|
S S

until S i1s terminal

a=0.1 y=09 &=0.4
S =(0,2)

Model free RL @L“ SIMLX
Conclusions

* We have shown on-policy MC methods and off-policy Q-Learning

* This does not mean that all MC methods are on-policy and all TD
methods are off-policy

» Off-policy MC methods: Utilise importance
sampling RAhxgrzgrir 045}
* SARSA (Step-Action-Reward-Step-Action): over1states o«
On-policy TD method episodes 0%
 We have seen 1-step TD methods:
» n-step TD methods bridge the gap between B
MC and TD paradigms a

n-step TD performance with varying n — Intermediate solutions may be
the best [Sutton & Barto 2018]

83/ 107

SImLX

Model free RL

Conclusions
Criteria Monte Carlo Methods Temporal Difference Methods
Bias vs Variance low bias, high variance high bias, low variance
Online
Bootstrapping because v: is based off of vt
Estimation
On-Policy On-policy MC SARSA
Off-Policy Oft-policy I\S/Ifmvgil’icpgjmportance Q-learning
Past vs Future Future data past experiences future (models MDP)

Model free RL

Beyond Tabular Methods

ol
BirsmL
 How to handle large multi-dimensional state-spaces?

 Can we expect similar states in a large state-space to be reasonably similar?
Is interpolation possible?

 How to handle continuous state-spaces?
* E.g. representing angles

 How to handle continuous actions?
* E.Q. representing force

* Curse of dimensionality ,
« Can we utilise (deep) neural networks somehow? M N

f////////;;////////;;////f////

The cart pole problem

Outline

e [ntroduction
* Reinforcement Learning Formalisation
 Model-Free Reinforcement Learning
 Value Function Approximation

* Introduction

o Supervised Objective

 Gradient and Semi-Gradient

» Example 1: MC v = v_Evaluation

- Example 2: TD v =~ v_ Evaluation

 Conclusions
* Policy Gradient Methods

85/ 107

Un

ML)

86/ 107

Value Function Approximation LLPSITILX
Introduction
» Solutions presented so far were tabular:

» Every state s € § has an entry V(s)
» Every state-action pair s € S, a € A has an entry 0J(s, a) (see slide 67)

 Three main problems:

» Large (but potentially discrete) state-spaces:
« Backgammon 1020 states
 Go 1070

e Continuous state-spaces
* Physical properties: distances, velocities, angles, ...
* Robotics applications

* Continuous actions

Value Function Approximation

BirsmL
Introduction

* ldea: Use supervised learning to train the function approximator
 Artificial Neural Networks (ANN) + Stochastic Gradient Descent (SGD)

V(s; W) Q (s,a; W) g(s,A;; w) g(s, Ay W)

T

\uJ \uJ

T - T

\) \) d \)

Left: State-Value function approximation for a given state; Middle: Action-Value function approximation for a
given state and action pair; Action-Value function approximation for each action for a given state

88/ 107

Value Function Approximation LPSIMLY

Supervised Objective
* Use standard Mean Squared Error (MSE) Loss:

Jow) = Y u(s)[v,(s) = 953)] Vis; W)

sES
» Scale each error by its importance as captured by the state
visitation frequency under policy : W
n(s) = h(s) +) n(3)) wlalHp(s|5.a)

1(5) on-policy distribution S

2. 1(s")

U(s) =

89/ 107

Value Function Approximation LPSIMLY

Gradient and Semi-Gradient Methods
* Use standard Mean Squared Error (MSE) Loss:

Jw) = Y u(s)[v(s) = o(s; W) Vis; W)

sES

e Combined with SGD: ’\/\
. 1 . 2 W
W, =W, — EaV [vﬂ(St) — V(S wt)]
=W, + a |v,(S) — H(S; w)| VI(S,; W) :

T \)
7o) = (aﬂw) w af(w))

ow, ow, ow,;

90/ 107

Value Function Approximation OLPSIMILX

Gradient and Semi-Gradient Methods
* Use standard Mean Squared Error (MSE) Loss:

Jow) = Y u(s)[v,(s) = 953)] Vis; W)

sES
* Problem: As this is not an actual supervised learning setting,
we do not have access to v_(s)! W

T

\)

91/ 107

Value Function Approximation OLPSIMILX

Gradient and Semi-Gradient Methods
* Use standard Mean Squared Error (MSE) Loss:

Jw) = Y u(s)[v(s) = o(s; W) Vis; W)

sES

* Problem: As this is not an actual supervised learning setting,
we do not have access to v_(s)! W

W . =W+« [Ut — V(S Wt)] V(s w,) T
[— {Gt MC approach — true gradient S
t R, +yv(S,.15W,) TD approach — semi-gradient

92/ 107

ol

Value Function Approximation

Example 1: MC § ~ v_ Evaluation

Gradient Monte Carlo Algorithm for Estimating v ~ v,

Input: the policy 7 to be evaluated V(S . W)
Input: a differentiable function ¢ : § x R — R

Algorithm parameter: step size o > 0

Initialize value-function weights w € R arbitrarily (e.g., w = 0)

Loop forever (for each episode):
Generate an episode So, Ao, R1,51,A1,..., R, ST using w
Loop for each step of episode, t =0,1,...,7T — 1:
W <— W &[Gt — Q/}(St,W)] VTD(St,W)

93/ 107

ol

Value Function Approximation

Example 2: TD v ~ v_ Evaluation

Semi-gradient TD(0) for estimating 0 ~ v,

Input: the policy 7 to be evaluated V(S , W)
Input: a differentiable function ¢ : $T x R¢ — R such that ¢(terminal,-) = 0

Algorithm parameter: step size o > 0
Initialize value-function weights w € R arbitrarily (e.g., w = 0)

Loop for each episode:

Initialize S w
Loop for each step of episode:
Choose A ~ 7(-].5)
Take action A, observe R, S’
W W+ a|R+70(S",w) — 0(S,w)| Vi (S,w) T
S« S \)

until S is terminal

94/ 107

Outline S PSIML

Un

e [ntroduction
* Reinforcement Learning Formalisation
 Model-Free Reinforcement Learning
* |nterlude: RL Taxonomy
* Value Function Approximation
 Policy Gradient Methods
* Introduction
 The Policy Gradient Theorem: Statement
 The Policy Gradient Theorem: Derivation
 REINFORCE Algorithm
e Actor-Critic Methods
 Policy Parametrisation for Continuous Actions
 Conclusions

Policy Gradient Methods

BirsmL
Introduction

* So far policies were implicit — we modelled state value functions; policy
followed states with high values

* ldea: Explicitly model the policy with an ANN
7(s;0) n(als; @)

u(s;0,) o%(s:0,)

|

\) \)

Left: Deterministic policy that produces an action for a given state; Right:
Stochastic policy that produces a distribution over actions given the state

96/ 107

Policy Gradient Methods L“ SIMLX

The Policy Gradient Theorem: Statement o

» We wish to maximise the performance under policy & parameterised by @
over an entire episode:

J(@) = v, ()
VJO) =E

q.(s,a)Vinn(a|s; H)]

SNﬂmﬂNﬂ,[

 \WWe can now improve performance using the gradient of the policy
represented as an ANN, but we still have g (s, a):

» We can explicitly model g (s, a) = g(s, a; w)

» We can replace it with the return G, as E_|G,| S, = s,A, = a] = g (S, A)):

VJ@O) =E, |G Vinx(A,|S;0)] REINFORCE

97/ 107

Policy Gradient Methods L“ SIMLX

The Policy Gradient Theorem: Derivation o

Vi, (s) = V lz w(a | 5:0)q,(s. a)] (slide 23)

= Z | Va(als;0)q,(s,a) + n(als;0)Vq,(s,a)| (derivative product rule)
— 2 [Vﬂ(a |5;0)q (s,a) +n(a|s;)V [r(s, a) + Zp(s’\ S, a)vﬂ(s’)]] (slide 23)

- Z lVﬂ(a\S;H)qﬂ(S, a) +n(a\s;9)z p(s’|s, d)VVﬂ(S’)] (recursion)

98/ 107

Policy Gradient Methods Z‘i S 4

The Policy Gradient Theorem: Derivation

Vi, (s) = V lz w(a | 5;0)q,(s, a)] (slide 22)

= Z | Va(als;0)q,(s,a) + n(als;0)Vq,(s,a)| (derivative product rule)
=) [Vn(a |55 0)q,(s,a) + m(a|s;0)V [r(s, a)+) p(s'|s, a)vn(S')]] (slide 22)

Va(als;0)q,(s,a) + n(als;0) ZP(S'\ N VVn(S’)l (recursion)

o0

— Z ZP(S — X, k, JZ')Z Va(a|x;0)q.(x,a) (unroll recursion)
xeS k=0

99/ 107

Policy Gradient Methods QPSIMLY

The Policy Gradient Theorem: Derivation
VJ(O) = Vv_(s)

— Z (i P(sy = s, k, 71')) Z Vr(als;0)q,(s,a)
k=0 a

\)

——
Un

= Y 1,(5) Y Vatals:0)q,(s.a) (slide 86)
=) 15) 1)), Valals:0)q,(s.a) (slide 86)

X Z p(s) Z Va(als;0)qs,a)

100/ 107

Policy Gradient Methods L“ SIMLX

The Policy Gradient Theorem: Derivation o

VJ(©@) = Vv (s,) grad log derivative trick
or
Vv ;0 : g
> ;/’t 5) ; mals:0)a.ds.a) eligibility vector
| Va(als;0) |] |
= Z ﬂﬂ(s)za: n(a|s;0)q.(s, a) - and Vinz(a|s;0) = v Vr(als;0)

=) u(s)) 7(a|$)q,(s.a) Vinn(a|s; 0)

q.(s,a)Vinz(als; 0)]

S~U AT [

101/ 107

BirsmL

Policy Gradient Methods

REINFORCE Algorithm
VJ@O) =L, qﬂ(s a)Vinn(als; 0)]

= E, [G,VInn(4,]S:0)] as ¢, = E, [G/|4, = a.5, = 5] (Slide 22)

T L

0.1 =0,+aG,Vinn(A|S;0,) Gradient Ascent Step

REINFORCE: Monte-Carlo Policy-Gradient Control (episodic) for .,

Input: a differentiable policy parameterization 7(a|s, @)
Algorithm parameter: step size o > 0

Initialize policy parameter 8 € R% (e.g., to 0)

Loop forever (for each episode):
Generate an episode Sy, Ag, R1,...,57_1, Ar_1, Ry, following 7 (-|-, 0)
Loop for each step of the episode t =0,1,...,7T — 1:
G Efzm VPTIRy, (Gt)
0« 0+ ay'GVInm(AS:, 0)

Policy Gradient Methods PSIMIL X
Actor-Critic Methods

 Speed-up learning and reduce variance by utilising bootstrapping
» Use g(s, a; w) or V(s; W) to estimate the TD residual 9,
0., =0,+a (R, +79S,;w) — ¥(S;w)) Vinz(A,|S,;0,)
=0 .+ ad,Inn(A,|S;0)

One-step Actor—Critic (episodic), for estimating mg =~ 7.

Input: a differentiable policy parameterization 7(als, 0)
Input: a differentiable state-value function parameterization v(s,w)
Parameters: step sizes a® > 0, % > 0
Initialize policy parameter @ € R4 and state-value weights w € R? (e.g., to 0)
Loop forever (for each episode):
Initialize S (first state of episode)
I 1
Loop while S is not terminal (for each time step):
A~ w(-|S,0)
Take action A, observe S’ R
d < R+ ~o(S",w) — 0(S,w) (if S” is terminal, then o(S",w) = 0)
w— w+ aVoVo(S,w)
0 «—0+a’I6VInn(A|S,0)
I ~1
S« S
—

Policy Gradient Methods

Policy Parametrisation for Continuous Actions

o(s; 0,/ 2)

u(s,0,) = 0,x(s), o(s,0,) = o (07x(5)))

* Define policy as the
Gaussian probability density
over the real-valued actions

e Use function approximation
for u(s; 0,) and 6°(s; 0.),

n(als;0) =

with potentially the same n(als;0)
feature extractor base X(s) #(:6,) ¢%(s;6,)
 \We can either learn the
variance, or keep it fixed to
ensure sufficient exploration
throughout learning
S

1.0

0.0

103/ 107

BirsmL

(a — u(s:0,))*

26(s;0,5)2

. 0=10,0,]"

1 l 1

1 I L)

1 I I

I l I

I I I I I 1 1 1 1 1 1

- pla

U=0, 0?=0.2, m—
U=0, 0°=1.0, m—

0.8

HU=0, 0°4=5.0,]
U==2, ?=0.5, m— _

0.6

0.4

0.2

L

Policy Gradient Methods

Policy Gradient (Monte Carlo) vs TD Learning

104/ 107

BirsmL

Criteria Policy Gradient Temporal Difference Methods
Bias vs Variance low bias, high variance high bias, low variance
Online
Bootstrapping because v: is based off of Vi,
Estimation
On-Policy
Off-Policy
Exploration vs Exploitation may be naturally handled not naturally handled
Past vs Future Future data past experiences future (models MDP)

Convergence speed

Convergence guarantees & stability*

Sample efficiency

Stochastic policy representation

Applicability to continuous action spaces

- The Deadly Triad: Bootstrapping & Function approximation & Off-policy

105/ 107

Policy Gradient Methods L“ SIMLX
Conclusions

o Stronger convergence guarantees compared to TD function approximation
methods due to the Policy Gradient Theorem

* Naturally applicable on continuous action spaces

* Can represent stochastic policies and approach deterministic policies
asymptomatically

 Most modern state of the art algorithms belong to either Actor-Critic methods
which combine both Monte Carlo and TD approaches

106/ 107

Next Steps L“ SIMLX
RL Areas and Papers

o State of the art model-free algorithms:

* Proximal Policy Optimisation (Schulman et al, 2017), Soft Actor Critic
(Haarnoja et al, 2018)

 Model-based approaches:

 Dyna-Q (Sutton and Barto 2018), Monte Carlo Tree Search (Sutton and
Barto, 2018), World Models (Ha and Schmidhuber, 2018)

* Hierarchical reinforcement learning:

« Between MDPs and Semi-MDPs (The options framework) (Sutton et al.
1999)

 Intrinsically motivated reinforcement learning:

* |Intrinsic Motivation and Reinforcement Learning (Barto, 2013), Curiosity-
driven Exploration by Self-supervised Prediction (Pathak et al, 2017)

107/ 107

ASIMLX

~"v)~ Thanks! =(V =)

